Mechanisms of femtosecond laser nanosurgery of cells and tissues

A. Vogel*, J. Noack, G. Hüttman, G. Paltauf

*Corresponding author for this work
1018 Citations (Scopus)


We review recent advances in laser cell surgery, and investigate the working mechanisms of femtosecond laser nanoprocessing in biomaterials with oscillator pulses of 80-MHz repetition rate and with amplified pulses of 1-kHz repetition rate. Plasma formation in water, the evolution of the temperature distribution, thermoelastic stress generation, and stress-induced bubble formation are numerically simulated for NA=1.3, and the outcome is compared to experimental results. Mechanisms and the spatial resolution of femtosecond laser surgery are then compared to the features of continuous-wave (cw) microbeams. We find that free electrons are produced in a fairly large irradiance range below the optical breakdown threshold, with a deterministic relationship between free-electron density and irradiance. This provides a large 'tuning range' for the creation of spatially extremely confined chemical, thermal, and mechanical effects via free-electron generation. Dissection at 80-MHz repetition rate is performed in the low-density plasma regime at pulse energies well below the optical breakdown threshold and only slightly higher than used for nonlinear imaging. It is mediated by free-electron-induced chemical decomposition (bond breaking) in conjunction with multiphoton-induced chemistry, and hardly related to heating or thermoelastic stresses. When the energy is raised, accumulative heating occurs and long-lasting bubbles are produced by tissue dissociation into volatile fragments, which is usually unwanted. By contrast, dissection at 1-kHz repetition rate is performed using more than 10-fold larger pulse energies and relies on thermoelastically induced formation of minute transient cavities with lifetimes <100 ns. Both modes of femtosecond laser nanoprocessing can achieve a 2-3 fold better precision than cell surgery using cw irradiation, and enable manipulation at arbitrary locations.

Original languageEnglish
JournalApplied Physics B: Lasers and Optics
Issue number8
Pages (from-to)1015-1047
Number of pages33
Publication statusPublished - 12.2005

Research Areas and Centers

  • Academic Focus: Biomedical Engineering


Dive into the research topics of 'Mechanisms of femtosecond laser nanosurgery of cells and tissues'. Together they form a unique fingerprint.

Cite this