Machine learning based classification of resting-state fMRI features exemplified by metabolic state (hunger/satiety)

Arkan Al-Zubaidi*, Alfred Mertins, Marcus Heldmann, Kamila Jauch-Chara, Thomas F. Münte

*Corresponding author for this work
8 Citations (Scopus)

Abstract

Objective: Resting-state functional magnetic resonance imaging (rs-fMRI) has become an essential measure to investigate the human brain’s spontaneous activity and intrinsic functional connectivity. Several studies including our own previous work have shown that the brain controls the regulation of energy expenditure and food intake behavior. Accordingly, we expected different metabolic states to influence connectivity and activity patterns in neuronal networks. Methods: The influence of hunger and satiety on rs-fMRI was investigated using three connectivity models (local connectivity, global connectivity and amplitude rs-fMRI signals). After extracting the connectivity parameters of 90 brain regions for each model, we used sequential forward floating selection strategy in conjunction with a linear support vector machine classifier and permutation tests to reveal which connectivity model differentiates best between metabolic states (hunger vs. satiety). Results: We found that the amplitude of rs-fMRI signals is slightly more precise than local and global connectivity models in order to detect resting brain changes during hunger and satiety with a classification accuracy of 81%. Conclusion: The amplitude of rs-fMRI signals serves as a suitable basis for machine learning based classification of brain activity. This opens up the possibility to apply this combination of algorithms to similar research questions, such as the characterization of brain states (e.g., sleep stages) or disease conditions (e.g., Alzheimer’s disease, minimal cognitive impairment).

Original languageEnglish
Article number164
JournalFrontiers in Human Neuroscience
Volume13
ISSN1662-5161
DOIs
Publication statusPublished - 01.02.2019

Research Areas and Centers

  • Academic Focus: Center for Brain, Behavior and Metabolism (CBBM)

Fingerprint

Dive into the research topics of 'Machine learning based classification of resting-state fMRI features exemplified by metabolic state (hunger/satiety)'. Together they form a unique fingerprint.

Cite this