TY - JOUR
T1 - Lysosomal impairment in Parkinson's disease
AU - Dehay, Benjamin
AU - Martinez-Vicente, Marta
AU - Caldwell, Guy A.
AU - Caldwell, Kim A.
AU - Yue, Zhenyue
AU - Cookson, Mark R.
AU - Klein, Christine
AU - Vila, Miquel
AU - Bezard, Erwan
PY - 2013/6/1
Y1 - 2013/6/1
N2 - Impairment of autophagy-lysosomal pathways (ALPs) is increasingly regarded as a major pathogenic event in neurodegenerative diseases, including Parkinson's disease (PD). ALP alterations are observed in sporadic PD brains and in toxic and genetic rodent models of PD-related neurodegeneration. In addition, PD-linked mutations and post-translational modifications of α-synuclein impair its own lysosomal-mediated degradation, thereby contributing to its accumulation and aggregation. Furthermore, other PD-related genes, such as leucine-rich repeat kinase-2 (LRRK2), parkin, and phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), have been mechanistically linked to alterations in ALPs. Conversely, mutations in lysosomal-related genes, such as glucocerebrosidase (GBA) and lysosomal type 5 P-type ATPase (ATP13A2), have been linked to PD. New data offer mechanistic molecular evidence for such a connection, unraveling a causal link between lysosomal impairment, α-synuclein accumulation, and neurotoxicity. First, PD-related GBA deficiency/mutations initiate a positive feedback loop in which reduced lysosomal function leads to α-synuclein accumulation, which, in turn, further decreases lysosomal GBA activity by impairing the trafficking of GBA from the endoplasmic reticulum-Golgi to lysosomes, leading to neurodegeneration. Second, PD-related mutations/deficiency in the ATP13A2 gene lead to a general lysosomal impairment characterized by lysosomal membrane instability, impaired lysosomal acidification, decreased processing of lysosomal enzymes, reduced degradation of lysosomal substrates, and diminished clearance of autophagosomes, collectively contributing to α-synuclein accumulation and cell death. According to these new findings, primary lysosomal defects could potentially account for Lewy body formation and neurodegeneration in PD, laying the groundwork for the prospective development of new neuroprotective/disease-modifying therapeutic strategies aimed at restoring lysosomal levels and function.
AB - Impairment of autophagy-lysosomal pathways (ALPs) is increasingly regarded as a major pathogenic event in neurodegenerative diseases, including Parkinson's disease (PD). ALP alterations are observed in sporadic PD brains and in toxic and genetic rodent models of PD-related neurodegeneration. In addition, PD-linked mutations and post-translational modifications of α-synuclein impair its own lysosomal-mediated degradation, thereby contributing to its accumulation and aggregation. Furthermore, other PD-related genes, such as leucine-rich repeat kinase-2 (LRRK2), parkin, and phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), have been mechanistically linked to alterations in ALPs. Conversely, mutations in lysosomal-related genes, such as glucocerebrosidase (GBA) and lysosomal type 5 P-type ATPase (ATP13A2), have been linked to PD. New data offer mechanistic molecular evidence for such a connection, unraveling a causal link between lysosomal impairment, α-synuclein accumulation, and neurotoxicity. First, PD-related GBA deficiency/mutations initiate a positive feedback loop in which reduced lysosomal function leads to α-synuclein accumulation, which, in turn, further decreases lysosomal GBA activity by impairing the trafficking of GBA from the endoplasmic reticulum-Golgi to lysosomes, leading to neurodegeneration. Second, PD-related mutations/deficiency in the ATP13A2 gene lead to a general lysosomal impairment characterized by lysosomal membrane instability, impaired lysosomal acidification, decreased processing of lysosomal enzymes, reduced degradation of lysosomal substrates, and diminished clearance of autophagosomes, collectively contributing to α-synuclein accumulation and cell death. According to these new findings, primary lysosomal defects could potentially account for Lewy body formation and neurodegeneration in PD, laying the groundwork for the prospective development of new neuroprotective/disease-modifying therapeutic strategies aimed at restoring lysosomal levels and function.
UR - http://www.scopus.com/inward/record.url?scp=84879607073&partnerID=8YFLogxK
U2 - 10.1002/mds.25462
DO - 10.1002/mds.25462
M3 - Scientific review articles
C2 - 23580333
AN - SCOPUS:84879607073
SN - 0885-3185
VL - 28
SP - 725
EP - 732
JO - Movement Disorders
JF - Movement Disorders
IS - 6
ER -