TY - JOUR
T1 - Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: Implications for therapy
AU - Schulte, Johannes H.
AU - Lim, Soyoung
AU - Schramm, Alexander
AU - Friedrichs, Nicolaus
AU - Koster, Jan
AU - Versteeg, Rogier
AU - Ora, Ingrid
AU - Pajtler, Kristián
AU - Klein-Hitpass, Ludger
AU - Kuhfittig-Kulle, Steffi
AU - Metzger, Eric
AU - Schüle, Roland
AU - Eggert, Angelika
AU - Buettner, Reinhard
AU - Kirfel, Jutta
N1 - Copyright:
Copyright 2009 Elsevier B.V., All rights reserved.
PY - 2009/3/1
Y1 - 2009/3/1
N2 - Aberrant epigenetic changes in DNA methylation and histone acetylation are hallmarks of most cancers, whereas histone methylation was previously considered to be irreversible and less versatile. Recently, several histone demethylases were identified catalyzing the removal of methyl groups from histone H3 lysine residues and thereby influencing gene expression. Neuroblastomas continue to remain a clinical challenge despite advances in multimodal therapy. Here, we address the functional significance of the chromatin modifying enzyme lysine-specificdemethylase 1 (LSDl) in neuroblasto-ma. LSDl expression correlated with adverse outcome and was inversely correlated with differentiation in neuroblastic tumors. Differentiation of neuroblastoma cells resulted in down-regulation of LSDl. Small interfering RNA-mediated knockdown of LSDl decreased cellular growth, induced expression of differentiation- associated genes, and increased target gene-specific H3K4 methylation. Moreover, LSDl inhibition using monoamine oxidase inhibitors resulted in an increase of global H3K4 methylation and growth inhibition of neuroblastoma cells in vitro. Finally, targeting LSDl reduced neuroblastoma xenograft growth in vivo. Here, we provide the first evidence that a histone demethylase, LSDl, is involved in maintaining the undifferentiated, malignant phenotype of neuroblastoma cells. We show that inhibition of LSDl «programs the transcriptome of neuroblastoma cells and inhibits neuroblastoma xenograft growth. Our results suggest that targeting histone demethylases may provide a novel option for cancer therapy.
AB - Aberrant epigenetic changes in DNA methylation and histone acetylation are hallmarks of most cancers, whereas histone methylation was previously considered to be irreversible and less versatile. Recently, several histone demethylases were identified catalyzing the removal of methyl groups from histone H3 lysine residues and thereby influencing gene expression. Neuroblastomas continue to remain a clinical challenge despite advances in multimodal therapy. Here, we address the functional significance of the chromatin modifying enzyme lysine-specificdemethylase 1 (LSDl) in neuroblasto-ma. LSDl expression correlated with adverse outcome and was inversely correlated with differentiation in neuroblastic tumors. Differentiation of neuroblastoma cells resulted in down-regulation of LSDl. Small interfering RNA-mediated knockdown of LSDl decreased cellular growth, induced expression of differentiation- associated genes, and increased target gene-specific H3K4 methylation. Moreover, LSDl inhibition using monoamine oxidase inhibitors resulted in an increase of global H3K4 methylation and growth inhibition of neuroblastoma cells in vitro. Finally, targeting LSDl reduced neuroblastoma xenograft growth in vivo. Here, we provide the first evidence that a histone demethylase, LSDl, is involved in maintaining the undifferentiated, malignant phenotype of neuroblastoma cells. We show that inhibition of LSDl «programs the transcriptome of neuroblastoma cells and inhibits neuroblastoma xenograft growth. Our results suggest that targeting histone demethylases may provide a novel option for cancer therapy.
UR - http://www.scopus.com/inward/record.url?scp=62449197931&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-08-1735
DO - 10.1158/0008-5472.CAN-08-1735
M3 - Journal articles
C2 - 19223552
AN - SCOPUS:62449197931
SN - 0008-5472
VL - 69
SP - 2065
EP - 2071
JO - Cancer Research
JF - Cancer Research
IS - 5
ER -