Linking motor-related brain potentials and velocity profiles in multi-joint arm reaching movements

Julià L. Amengual, Josep Marco-Pallarés, Carles Grau, Thomas F. Münte, Antoni Rodríguez-Fornells

3 Citations (Scopus)

Abstract

The study of the movement related brain potentials (MRPBs) needs accurate technical approaches to disentangle the specific patterns of bran activity during the preparation and execution of movements. During the last forty years, synchronizing the electromyographic activation (EMG) of the muscle with electrophysiological recordings (EEG) has been commonly ussed for these purposes. However, new clinical approaches in the study of motor diseases and rehabilitation suggest the demand of new paradigms that might go further into the study of the brain activity associated with the kinematics of movements. As a response to this call, we have used a 3-D hand-tracking system with the aim to record continuously the position of an ultrasonic sender attached to the hand during the performance of multi-joint self-paced movements. We synchronized time-series of position and velocity of the sender with the EEG recordings, obtaining specific patterns of brain activity as a function of the fluctuations of the kinematics during natural movement performance. Additionally, the distribution of the brain activity during the preparation and execution phases of movements was similar that reported previously using the EMG, suggesting the validity of our technique. We claim that this paradigm could be usable in patients because of its simplicity and the potential knowledge that can be extracted from clinical protocols.

Original languageEnglish
Article number271
JournalFrontiers in Human Neuroscience
Volume8
Issue number1 APR
DOIs
Publication statusPublished - 29.04.2014

Fingerprint

Dive into the research topics of 'Linking motor-related brain potentials and velocity profiles in multi-joint arm reaching movements'. Together they form a unique fingerprint.

Cite this