Light-Controlled Delivery of Monoclonal Antibodies for Targeted Photoinactivation of Ki-67

Sijia Wang, Gereon Hüttmann, Zhenxi Zhang, Alfred Vogel, Reginald Birngruber, Shifalika Tangutoori, Tayyaba Hasan, Ramtin Rahmanzadeh*

*Corresponding author for this work
6 Citations (Scopus)


The selective inhibition of intracellular and nuclear molecules such as Ki-67 holds great promise for the treatment of cancer and other diseases. However, the choice of the target protein and the intracellular delivery of the functional agent remain crucial challenges. Main hurdles are (a) an effective delivery into cells, (b) endosomal escape of the delivered agents, and (c) an effective, externally triggered destruction of cells. Here we show a light-controlled two-step approach for selective cellular delivery and cell elimination of proliferating cells. Three different cell-penetrating nano constructs, including liposomes, conjugates with the nuclear localization sequence (NLS), and conjugates with the cell penetrating peptide Pep-1, delivered the light activatable antibody conjugate TuBB-9-FITC, which targets the proliferation associated protein Ki-67. HeLa cells were treated with the photosensitizer benzoporphyrin monoacid derivative (BPD) and the antibody constructs. In the first optically controlled step, activation of BPD at 690 nm triggered a controlled endosomal escape of the TuBB-9-FITC constructs. In more than 75% of Ki-67 positive, irradiated cells TuBB-9-FITC antibodies relocated within 24 h from cytoplasmic organelles to the cell nucleus and bound to Ki-67. After a second light irradiation at 490 nm, which activated FITC, cell viability decreased to approximately 13%. Our study shows an effective targeting strategy, which uses light-controlled endosomal escape and the light inactivation of Ki-67 for cell elimination. The fact that liposomal or peptide-assisted delivery give similar results leads to the additional conclusion that an effective mechanism for endosomal escape leaves greater variability for the choice of the delivery agent.

Original languageEnglish
JournalMolecular Pharmaceutics
Issue number9
Pages (from-to)3272-3281
Number of pages10
Publication statusPublished - 08.09.2015


Dive into the research topics of 'Light-Controlled Delivery of Monoclonal Antibodies for Targeted Photoinactivation of Ki-67'. Together they form a unique fingerprint.

Cite this