Abstract
We analyze a reduction rule for computing kernels for the hitting set problem: In a hypergraph, the link of a set c of vertices consists of all edges that are supersets of c. We call such a set critical if its link has certain easy-to-check size properties. The rule states that the link of a critical c can be replaced by c. It is known that a simple linear-time algorithm for computing hitting set kernels (number of edges) at most k^d (k is the hitting set size, d is the maximum edge size) can be derived from this rule. We parallelize this algorithm and obtain the first AC⁰ kernel algorithm that outputs polynomial-size kernels. Previously, such algorithms were not even known for artificial problems. An interesting application of our methods lies in traditional, non-parameterized approximation theory: Our results imply that uniform AC⁰-circuits can compute a hitting set whose size is polynomial in the size of an optimal hitting set.
Original language | English |
---|---|
Pages | 9:1-9:16 |
DOIs | |
Publication status | Published - 2020 |
Event | 17th Scandinavian Symposium and Workshops on Algorithm Theory - University of the Faroe Islands, online session, Faroe Islands Duration: 12.06.2020 → 12.06.2020 https://www.setur.fo/en/education/swat-2020/ |
Conference
Conference | 17th Scandinavian Symposium and Workshops on Algorithm Theory |
---|---|
Abbreviated title | SWAT 2020 |
Country/Territory | Faroe Islands |
City | online session |
Period | 12.06.20 → 12.06.20 |
Internet address |
DFG Research Classification Scheme
- 409-01 Theoretical Computer Science