Abstract
Escherichia coli is one of the most prevalent pathogens, causing a variety of infections including bloodstream infections. At the same time, it can be found as a commensal, being part of the intestinal microflora. While it is widely accepted that pathogenic strains can evolve from colonizing E. coli strains, the evolutionary route facilitating the commensal-to-pathogen transition is complex and remains not fully understood. Identification of the underlying mechanisms and genetic changes remains challenging. To investigate the factors involved in the transition from intestinal commensal to invasive E. coli causing bloodstream infections, we compared E. coli isolated from blood culture to isolates from the rectal flora of the same individuals by whole genome sequencing to identify clonally related strains and potentially relevant virulence factors. in vitro invasion assays using a Caco- 2 cell intestinal epithelial barrier model and a gut organoid model were performed to compare clonally related E. coli. The experiments revealed a correlation between the presence of an IncFII plasmid carrying hha and the degree of invasiveness. In summary, we provide evidence for the role of an IncFII plasmid in the transition of colonization to invasion in clinical E. coli isolates.
Original language | English |
---|---|
Journal | Pathogens |
Volume | 10 |
Issue number | 12 |
ISSN | 2076-0817 |
DOIs | |
Publication status | Published - 2021 |