TY - JOUR
T1 - Interleukin-1β promotes hypoxia-induced apoptosis of glioblastoma cells by inhibiting hypoxia-inducible factor-1 mediated adrenomedullin production.
AU - Sun, W.
AU - Depping, R.
AU - Jelkmann, W.
N1 - Funding Information:
Acknowledgements. We thank G Huck for excellent technical support and D Reher for the help in determining the biological activity of exogenous adrenomedullin. The project was supported by University of Luebeck (P04-2012).
Copyright:
This record is sourced from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine
PY - 2014
Y1 - 2014
N2 - Glioblastoma is the most common brain tumor in adults. Advanced glioblastomas normally contain hypoxic areas. The primary cellular responses to hypoxia are generally mediated by the transcription factor hypoxia-inducible factor 1 (HIF-1). Interleukin-1β (IL-1β) is a cytokine that is often present in the glioblastoma microenvironment and is known to be a modulator of glioblastoma progression. However, the role of IL-1β in regulating glioblastoma progression is still controversial. In this study, we found that in the human glioblastoma cell lines U87MG and U138MG, IL-1β inhibits the transactivation activity of HIF-1 by promoting the ubiquitin-independent proteasomal degradation of the oxygen-labile α-subunit of HIF-1 and downregulates the expression of the HIF-1 target gene adrenomedullin (AM). Apoptosis and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assays showed that AM protects glioblastoma cells against hypoxia-induced apoptosis in a dose-dependent manner. Thus, in the presence of IL-1β more glioblastoma cells undergo hypoxia-induced cell death. Our findings suggest that when estimating the influence of IL-1β on the prognosis of glioblastoma patients, factors such as the degree of hypoxia, the expression levels of HIF-1 and AM should be taken into consideration. For the AM-producing glioblastoma cells, IL-1β represents a potent apoptosis inducer.
AB - Glioblastoma is the most common brain tumor in adults. Advanced glioblastomas normally contain hypoxic areas. The primary cellular responses to hypoxia are generally mediated by the transcription factor hypoxia-inducible factor 1 (HIF-1). Interleukin-1β (IL-1β) is a cytokine that is often present in the glioblastoma microenvironment and is known to be a modulator of glioblastoma progression. However, the role of IL-1β in regulating glioblastoma progression is still controversial. In this study, we found that in the human glioblastoma cell lines U87MG and U138MG, IL-1β inhibits the transactivation activity of HIF-1 by promoting the ubiquitin-independent proteasomal degradation of the oxygen-labile α-subunit of HIF-1 and downregulates the expression of the HIF-1 target gene adrenomedullin (AM). Apoptosis and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assays showed that AM protects glioblastoma cells against hypoxia-induced apoptosis in a dose-dependent manner. Thus, in the presence of IL-1β more glioblastoma cells undergo hypoxia-induced cell death. Our findings suggest that when estimating the influence of IL-1β on the prognosis of glioblastoma patients, factors such as the degree of hypoxia, the expression levels of HIF-1 and AM should be taken into consideration. For the AM-producing glioblastoma cells, IL-1β represents a potent apoptosis inducer.
UR - http://www.scopus.com/inward/record.url?scp=84906898059&partnerID=8YFLogxK
U2 - 10.1038/cddis.2013.562
DO - 10.1038/cddis.2013.562
M3 - Journal articles
C2 - 24457964
AN - SCOPUS:84906898059
SN - 2041-4889
VL - 5
JO - Cell death & disease
JF - Cell death & disease
ER -