TY - JOUR
T1 - Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection
AU - Wolfrum, Sebastian
AU - Dendorfer, Andreas
AU - Rikitake, Yoshiyuki
AU - Stalker, Timothy J.
AU - Gong, Yulan
AU - Scalia, Rosario
AU - Dominiak, Peter
AU - Liao, James K.
PY - 2004/10/1
Y1 - 2004/10/1
N2 - Objective - Rho-Kinase activity is increased in cardiovascular diseases and in patients with cardiovascular risk factors. However, it is not known whether inhibition of Rho-kinase could lead to cardiovascular protection and, if so, by what mechanism. Methods and Results - In human endothelial cells, the Rho-kinase inhibitor, hydroxyfasudil (HF) (1 to 100 μmol/L), increased Akt serine-473 phosphorylation within 15 minutes, leading to a 2.2-fold and 4.0-fold increase in Akt kinase activity and nitric oxide (NO) release, respectively. Activation of Akt and eNOS by HF was completely blocked by the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, LY294002 (10 μmol/L). To determine the physiological relevance of this pathway, we used 2 models of ischemia-reperfusion (I/R) injury. Acute administration of fasudil (10 mg/kg, intraperitoneal, 1 hour before ischemia) decreased leukocyte recruitment and adhesion to the mesenteric endothelium after I/R injury in wild-type but not eNOS-/- mice. Similarly, treatment with fasudil decreased myocardial infarct size by 38% in rats subjected to transient coronary artery occlusion. Cotreatment with 2 PI3-kinase inhibitors, wortmannin and LY294002, or the eNOS inhibitor, L-NAME, blocked the cardiovascular protective effects of fasudil. Conclusions - Inhibition of Rho-kinase leads to the activation of the PI3-kinase/Akt/eNOS pathway and cardiovascular protection. These findings suggest that Rho-kinase may play an important role in mediating the inflammatory response to I/R injury.
AB - Objective - Rho-Kinase activity is increased in cardiovascular diseases and in patients with cardiovascular risk factors. However, it is not known whether inhibition of Rho-kinase could lead to cardiovascular protection and, if so, by what mechanism. Methods and Results - In human endothelial cells, the Rho-kinase inhibitor, hydroxyfasudil (HF) (1 to 100 μmol/L), increased Akt serine-473 phosphorylation within 15 minutes, leading to a 2.2-fold and 4.0-fold increase in Akt kinase activity and nitric oxide (NO) release, respectively. Activation of Akt and eNOS by HF was completely blocked by the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, LY294002 (10 μmol/L). To determine the physiological relevance of this pathway, we used 2 models of ischemia-reperfusion (I/R) injury. Acute administration of fasudil (10 mg/kg, intraperitoneal, 1 hour before ischemia) decreased leukocyte recruitment and adhesion to the mesenteric endothelium after I/R injury in wild-type but not eNOS-/- mice. Similarly, treatment with fasudil decreased myocardial infarct size by 38% in rats subjected to transient coronary artery occlusion. Cotreatment with 2 PI3-kinase inhibitors, wortmannin and LY294002, or the eNOS inhibitor, L-NAME, blocked the cardiovascular protective effects of fasudil. Conclusions - Inhibition of Rho-kinase leads to the activation of the PI3-kinase/Akt/eNOS pathway and cardiovascular protection. These findings suggest that Rho-kinase may play an important role in mediating the inflammatory response to I/R injury.
UR - http://www.scopus.com/inward/record.url?scp=5344268785&partnerID=8YFLogxK
U2 - 10.1161/01.ATV.0000142813.33538.82
DO - 10.1161/01.ATV.0000142813.33538.82
M3 - Journal articles
C2 - 15319269
AN - SCOPUS:5344268785
SN - 1079-5642
VL - 24
SP - 1842
EP - 1847
JO - Arteriosclerosis, Thrombosis, and Vascular Biology
JF - Arteriosclerosis, Thrombosis, and Vascular Biology
IS - 10
ER -