Abstract
Early intervention strategies in psychosis would significantly benefit from the identification of reliable prognostic biomarkers. Pattern classification methods have shown the feasibility of an early diagnosis of psychosis onset both in clinical and familial high-risk populations. Here we were interested in replicating our previous classification findings using an independent cohort at clinical high risk for psychosis, drawn from the prospective FePsy (Fruherkennung von Psychosen) study. The same neuroanatomical-based pattern classification pipeline, consisting of a linear Support Vector Machine (SVM) and a Recursive Feature Selection (RFE) achieved 74% accuracy in predicting later onset of psychosis. The discriminative neuroanatomical pattern underlying this finding consisted of many brain areas across all four lobes and the cerebellum. These results provide proof-of-concept that the early diagnosis of psychosis is feasible using neuroanatomical-based pattern recognition.
| Original language | English |
|---|---|
| Journal | Schizophrenia Research |
| Volume | 214 |
| Pages (from-to) | 18-23 |
| Number of pages | 6 |
| ISSN | 0920-9964 |
| DOIs | |
| Publication status | Published - 12.2019 |
Funding
The FePsy project was supported by the Swiss National Science Foundation ( 3200-057216.99 , 3200-0572216.99 , PBBSB-106936 , and 3232BO-119382 ); the Nora van Meeuwen-Haefliger Stiftung , Basel (CH), and by unconditional grants from the Novartis Foundation , Bristol-Myers Squibb , GmbH (CH), Eli Lilly SA (CH), AstraZeneca AG (CH), Janssen-Cilag AG (CH), and Sanofi-Synthelabo AG (CH).