TY - JOUR
T1 - Immunocytochemical colocalization of adhesive proteins with clathrin in human blood platelets: further evidence for coated vesicle-mediated transport of von Willebrand factor, fibrinogen and fibronectin
AU - Klinger, Matthias H.F.
AU - Klüter, Harald
N1 - Copyright:
Copyright 2007 Elsevier B.V., All rights reserved.
PY - 1995/3
Y1 - 1995/3
N2 - Coated membranes and vesicles play an important role in receptor-mediated endocytosis and intracellular trafficking in various cell types, and are also present in blood platelets. Platelets take up certain proteins from the blood plasma, such as von Willebrand factor and fibrinogen, and these substances are transferred to storage granules. The receptors for these plasma proteins on the platelet plasma membrane have been well characterized, but morphological evidence for their transport to the storage granules is not yet available. In an attempt to clarify this aspect, we employed postembedding immunocytochemistry on platelets embedded in the acrylic resin LR White. Clathrin as the major coat component of coated vesicles was localized in the cytoplasm, on the plasmic faces of α-granules and the open canalicular system, and on the plasmic face of the plasma membrane. Colocalizations of the adhesive proteins, von Willebrand factor, fibrinogen and fibronectin, with clathrin could be observed at the same typical locations as coated vesicles were seen in Araldite-embedded material. These colocalizations have not been reported to date and furnish further evidence for a coated vesicle-mediated transport of blood plasma-derived adhesive proteins from their receptors on the outer plasma membrane to the α-granules.
AB - Coated membranes and vesicles play an important role in receptor-mediated endocytosis and intracellular trafficking in various cell types, and are also present in blood platelets. Platelets take up certain proteins from the blood plasma, such as von Willebrand factor and fibrinogen, and these substances are transferred to storage granules. The receptors for these plasma proteins on the platelet plasma membrane have been well characterized, but morphological evidence for their transport to the storage granules is not yet available. In an attempt to clarify this aspect, we employed postembedding immunocytochemistry on platelets embedded in the acrylic resin LR White. Clathrin as the major coat component of coated vesicles was localized in the cytoplasm, on the plasmic faces of α-granules and the open canalicular system, and on the plasmic face of the plasma membrane. Colocalizations of the adhesive proteins, von Willebrand factor, fibrinogen and fibronectin, with clathrin could be observed at the same typical locations as coated vesicles were seen in Araldite-embedded material. These colocalizations have not been reported to date and furnish further evidence for a coated vesicle-mediated transport of blood plasma-derived adhesive proteins from their receptors on the outer plasma membrane to the α-granules.
UR - http://www.scopus.com/inward/record.url?scp=0028911648&partnerID=8YFLogxK
U2 - 10.1007/BF00318157
DO - 10.1007/BF00318157
M3 - Journal articles
C2 - 7736548
AN - SCOPUS:0028911648
SN - 0302-766X
VL - 279
SP - 453
EP - 457
JO - Cell & Tissue Research
JF - Cell & Tissue Research
IS - 3
ER -