TY - JOUR
T1 - Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRIIIB and Mac-1
AU - Behnen, Martina
AU - Leschczyk, Christoph
AU - Möller, Sonja
AU - Batel, Tobit
AU - Klinger, Matthias
AU - Solbach, Werner
AU - Laskay, Tamás
N1 - Copyright © 2014 by The American Association of Immunologists, Inc.
PY - 2014/8/15
Y1 - 2014/8/15
N2 - Canonical neutrophil antimicrobial effector mechanisms, such as degranulation, production of reactive oxygen species, and release of neutrophil extracellular traps (NETs), can result in severe pathology. Activation of neutrophils through immune complexes (ICs) plays a central role in the pathogenesis of many autoimmune inflammatory diseases. In this study, we report that immobilized ICs (iICs), which are hallmarks of several autoimmune diseases, induce the release of NETs from primary human neutrophils. The iIC-induced NET formation was found to require production of reactive oxygen species by NADPH oxidase and myeloperoxidase and to be mediated by FcγRIIIb. Blocking of the β2 integrin macrophage-1 Ag but not lymphocyte function-associated Ag-1 abolished iIC-induced NET formation. This suggests that FcγRIIIb signals in association with macrophage-1 Ag. As intracellular signaling pathways involved in iIC-induced NET formation we identified the tyrosine kinase Src/Syk pathway, which downstream regulates the PI3K/Akt, p38 MAPK, and ERK1/2 pathways. To our knowledge, the present study shows for the first time that iICs induce NET formation. Thus, we conclude that NETs contribute to pathology in autoimmune inflammatory disorders associated with surface-bound ICs.
AB - Canonical neutrophil antimicrobial effector mechanisms, such as degranulation, production of reactive oxygen species, and release of neutrophil extracellular traps (NETs), can result in severe pathology. Activation of neutrophils through immune complexes (ICs) plays a central role in the pathogenesis of many autoimmune inflammatory diseases. In this study, we report that immobilized ICs (iICs), which are hallmarks of several autoimmune diseases, induce the release of NETs from primary human neutrophils. The iIC-induced NET formation was found to require production of reactive oxygen species by NADPH oxidase and myeloperoxidase and to be mediated by FcγRIIIb. Blocking of the β2 integrin macrophage-1 Ag but not lymphocyte function-associated Ag-1 abolished iIC-induced NET formation. This suggests that FcγRIIIb signals in association with macrophage-1 Ag. As intracellular signaling pathways involved in iIC-induced NET formation we identified the tyrosine kinase Src/Syk pathway, which downstream regulates the PI3K/Akt, p38 MAPK, and ERK1/2 pathways. To our knowledge, the present study shows for the first time that iICs induce NET formation. Thus, we conclude that NETs contribute to pathology in autoimmune inflammatory disorders associated with surface-bound ICs.
U2 - 10.4049/jimmunol.1400478
DO - 10.4049/jimmunol.1400478
M3 - Journal articles
C2 - 25024378
SN - 0022-1767
VL - 193
SP - 1954
EP - 1965
JO - Journal of immunology (Baltimore, Md. : 1950)
JF - Journal of immunology (Baltimore, Md. : 1950)
IS - 4
ER -