TY - JOUR
T1 - Imaging short- and long-term training success in chronic aphasia
AU - Menke, Ricarda
AU - Meinzer, Marcus
AU - Kugel, Harald
AU - Deppe, Michael
AU - Baumgärtner, Annette
AU - Schiffbauer, Hagen
AU - Thomas, Marion
AU - Kramer, Kira
AU - Lohmann, Hubertus
AU - Flöel, Agnes
AU - Knecht, Stefan
AU - Breitenstein, Caterina
N1 - Funding Information:
We thank all patients and healthy volunteers for their participation in the study. This work was supported by the BMBF-Research Consortium: Dopaminergic learning enhancement (01GW0520), the Volkswagen Stif-tung (Az.: I/80 708), a Marie Curie Research and Training Network: Language and Brain funded by the European Commission (MRTN-CT-2004-512141), the BMBF-Competence Network Mednet Atrial Fibrillation, Interdisciplinary Center for Clinical Research (Floe 3-004-008), the Neuromed-ical Foundation Muenster, Germany, and the German Foundation for Science (DFG, ME 3161/2-1 and Fl 379/4-1). All authors declare that they have no competing financial or other conflicts of interest.
PY - 2009/9/22
Y1 - 2009/9/22
N2 - Background: To date, functional imaging studies of treatment-induced recovery from chronic aphasia only assessed short-term treatment effects after intensive language training. In the present study, we show with functional magnetic resonance imaging (fMRI), that different brain regions may be involved in immediate versus long-term success of intensive language training in chronic post-stroke aphasia patients. Results: Eight patients were trained daily for three hours over a period of two weeks in naming of concrete objects. Prior to, immediately after, and eight months after training, patients overtly named trained and untrained objects during event-related fMRI. On average the patients improved from zero (at baseline) to 64.4% correct naming responses immediately after training, and treatment success remained highly stable at follow-up. Regression analyses showed that the degree of short-term treatment success was predicted by increased activity (compared to the pretraining scan) bilaterally in the hippocampal formation, the right precuneus and cingulate gyrus, and bilaterally in the fusiform gyri. A different picture emerged for long-term training success, which was best predicted by activity increases in the right-sided Wernicke's homologue and to a lesser degree in perilesional temporal areas. Conclusion: The results show for the first time that treatment-induced language recovery in the chronic stage after stroke is a dynamic process. Initially, brain regions involved in memory encoding, attention, and multimodal integration mediated treatment success. In contrast, long-term treatment success was predicted mainly by activity increases in the so-called 'classical' language regions. The results suggest that besides perilesional and homologue language-associated regions, functional integrity of domain-unspecific memory structures may be a prerequisite for successful (intensive) language interventions.
AB - Background: To date, functional imaging studies of treatment-induced recovery from chronic aphasia only assessed short-term treatment effects after intensive language training. In the present study, we show with functional magnetic resonance imaging (fMRI), that different brain regions may be involved in immediate versus long-term success of intensive language training in chronic post-stroke aphasia patients. Results: Eight patients were trained daily for three hours over a period of two weeks in naming of concrete objects. Prior to, immediately after, and eight months after training, patients overtly named trained and untrained objects during event-related fMRI. On average the patients improved from zero (at baseline) to 64.4% correct naming responses immediately after training, and treatment success remained highly stable at follow-up. Regression analyses showed that the degree of short-term treatment success was predicted by increased activity (compared to the pretraining scan) bilaterally in the hippocampal formation, the right precuneus and cingulate gyrus, and bilaterally in the fusiform gyri. A different picture emerged for long-term training success, which was best predicted by activity increases in the right-sided Wernicke's homologue and to a lesser degree in perilesional temporal areas. Conclusion: The results show for the first time that treatment-induced language recovery in the chronic stage after stroke is a dynamic process. Initially, brain regions involved in memory encoding, attention, and multimodal integration mediated treatment success. In contrast, long-term treatment success was predicted mainly by activity increases in the so-called 'classical' language regions. The results suggest that besides perilesional and homologue language-associated regions, functional integrity of domain-unspecific memory structures may be a prerequisite for successful (intensive) language interventions.
UR - http://www.scopus.com/inward/record.url?scp=70349782853&partnerID=8YFLogxK
U2 - 10.1186/1471-2202-10-118
DO - 10.1186/1471-2202-10-118
M3 - Journal articles
C2 - 19772660
AN - SCOPUS:70349782853
SN - 0306-4522
VL - 10
SP - 118
JO - BMC Neuroscience
JF - BMC Neuroscience
M1 - 1471
ER -