TY - JOUR
T1 - Hypothalamic-pituitary-thyroid axis hormones stimulate mitochondrial function and biogenesis in human hair follicles
AU - Vidali, Silvia
AU - Knuever, Jana
AU - Lerchner, Johannes
AU - Giesen, Melanie
AU - Bíró, Tamás
AU - Klinger, Matthias
AU - Kofler, Barbara
AU - Funk, Wolfgang
AU - Poeggeler, Burkhard
AU - Paus, Ralf
PY - 2014/1/1
Y1 - 2014/1/1
N2 - Thyroid hormones regulate mitochondrial function. As other hypothalamic-pituitary-thyroid (HPT) axis hormones, i.e., thyrotropin-releasing hormone (TRH) and thyrotropin (TSH), are expressed in human hair follicles (HFs) and regulate mitochondrial function in human epidermis, we investigated in organ-cultured human scalp HFs whether TRH (30 nM), TSH (10 mU ml-1), thyroxine (T4) (100 nM), and triiodothyronine (T3) (100 pM) alter intrafollicular mitochondrial energy metabolism. All HPT-axis members increased gene and protein expression of mitochondrial-encoded subunit 1 of cytochrome c oxidase (MTCO1), a subunit of respiratory chain complex IV, mitochondrial transcription factor A (TFAM), and Porin. All hormones also stimulated intrafollicular complex I/IV activity and mitochondrial biogenesis. The TSH effects on MTCO1, TFAM, and porin could be abolished by K1-70, a TSH-receptor antagonist, suggesting a TSH receptor-mediated action. Notably, as measured by calorimetry, T3 and TSH increased follicular heat production, whereas T3 /T4 and TRH stimulated ATP production in cultured HF keratinocytes. HPT-axis hormones did not increase reactive oxygen species (ROS) production. Rather, T3 and T 4 reduced ROS formation, and all tested HPT-axis hormones increased the transcription of ROS scavengers (catalase, superoxide dismutase 2) in HF keratinocytes. Thus, mitochondrial biology, energy metabolism, and redox state of human HFs are subject to profound (neuro-)endocrine regulation by HPT-axis hormones. The neuroendocrine control of mitochondrial biology in a complex human mini-organ revealed here may be therapeutically exploitable.
AB - Thyroid hormones regulate mitochondrial function. As other hypothalamic-pituitary-thyroid (HPT) axis hormones, i.e., thyrotropin-releasing hormone (TRH) and thyrotropin (TSH), are expressed in human hair follicles (HFs) and regulate mitochondrial function in human epidermis, we investigated in organ-cultured human scalp HFs whether TRH (30 nM), TSH (10 mU ml-1), thyroxine (T4) (100 nM), and triiodothyronine (T3) (100 pM) alter intrafollicular mitochondrial energy metabolism. All HPT-axis members increased gene and protein expression of mitochondrial-encoded subunit 1 of cytochrome c oxidase (MTCO1), a subunit of respiratory chain complex IV, mitochondrial transcription factor A (TFAM), and Porin. All hormones also stimulated intrafollicular complex I/IV activity and mitochondrial biogenesis. The TSH effects on MTCO1, TFAM, and porin could be abolished by K1-70, a TSH-receptor antagonist, suggesting a TSH receptor-mediated action. Notably, as measured by calorimetry, T3 and TSH increased follicular heat production, whereas T3 /T4 and TRH stimulated ATP production in cultured HF keratinocytes. HPT-axis hormones did not increase reactive oxygen species (ROS) production. Rather, T3 and T 4 reduced ROS formation, and all tested HPT-axis hormones increased the transcription of ROS scavengers (catalase, superoxide dismutase 2) in HF keratinocytes. Thus, mitochondrial biology, energy metabolism, and redox state of human HFs are subject to profound (neuro-)endocrine regulation by HPT-axis hormones. The neuroendocrine control of mitochondrial biology in a complex human mini-organ revealed here may be therapeutically exploitable.
UR - http://www.scopus.com/inward/record.url?scp=84891034417&partnerID=8YFLogxK
U2 - 10.1038/jid.2013.286
DO - 10.1038/jid.2013.286
M3 - Journal articles
AN - SCOPUS:84891034417
SN - 0022-202X
VL - 134
SP - 33
EP - 42
JO - Journal of Investigative Dermatology
JF - Journal of Investigative Dermatology
IS - 1
ER -