HSPB3 protein is expressed in motoneurons and induces their survival after lesion-induced degeneration

Veronica La Padula, Ori Staszewski, Sigrun Nestel, Hauke Busch, Melanie Boerries, Eleni Roussa, Marco Prinz, Kerstin Krieglstein

Abstract

The human small heat shock proteins (HSPBs) form a family of molecular chaperones comprising ten members (HSPB1-HSPB10), whose functions span from protein quality control to cytoskeletal dynamics and cell death control. Mutations in HSPBs can lead to human disease and particularly point mutations in HSPB1 and HSPB8 are known to lead to peripheral neuropathies. Recently, a missense mutation (R7S) in yet another member of this family, HSPB3, was found to cause an axonal motor neuropathy (distal hereditary motor neuropathy type 2C, dHMN2C). Until now, HSPB3 protein localization and function in motoneurons (MNs) have not yet been characterized. Therefore, we studied the endogenous HSPB3 protein distribution in the spinal cords of chicken and mouse embryos and in the postnatal nervous system (central and peripheral) of chicken, mouse and human. We further investigated the impact of wild-type and mutated HSPB3 on MN cell death via overexpressing these genes in ovo in an avian model of MN degeneration, the limb-bud removal. Altogether, our findings represent a first step for a better understanding of the cellular and molecular mechanisms leading to dHMN2C.

Original languageEnglish
JournalExperimental Neurology
Volume286
Pages (from-to)40-49
Number of pages10
ISSN0014-4886
DOIs
Publication statusPublished - 2016

Fingerprint

Dive into the research topics of 'HSPB3 protein is expressed in motoneurons and induces their survival after lesion-induced degeneration'. Together they form a unique fingerprint.

Cite this