TY - JOUR
T1 - HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons
AU - Kishinevsky, Sarah
AU - Wang, Tai
AU - Rodina, Anna
AU - Chung, Sun Young
AU - Xu, Chao
AU - Philip, John
AU - Taldone, Tony
AU - Joshi, Suhasini
AU - Alpaugh, Mary L.
AU - Bolaender, Alexander
AU - Gutbier, Simon
AU - Sandhu, Davinder
AU - Fattahi, Faranak
AU - Zimmer, Bastian
AU - Shah, Smit K.
AU - Chang, Elizabeth
AU - Inda, Carmen
AU - Koren, John
AU - Saurat, Nathalie G.
AU - Leist, Marcel
AU - Gross, Steven S.
AU - Seshan, Venkatraman E.
AU - Klein, Christine
AU - Tomishima, Mark J.
AU - Erdjument-Bromage, Hediye
AU - Neubert, Thomas A.
AU - Henrickson, Ronald C.
AU - Chiosis, Gabriela
AU - Studer, Lorenz
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Environmental and genetic risk factors contribute to Parkinson’s Disease (PD) pathogenesis and the associated midbrain dopamine (mDA) neuron loss. Here, we identify early PD pathogenic events by developing methodology that utilizes recent innovations in human pluripotent stem cells (hPSC) and chemical sensors of HSP90-incorporating chaperome networks. We show that events triggered by PD-related genetic or toxic stimuli alter the neuronal proteome, thereby altering the stress-specific chaperome networks, which produce changes detected by chemical sensors. Through this method we identify STAT3 and NF-κB signaling activation as examples of genetic stress, and phospho-tyrosine hydroxylase (TH) activation as an example of toxic stress-induced pathways in PD neurons. Importantly, pharmacological inhibition of the stress chaperome network reversed abnormal phospho-STAT3 signaling and phospho-TH-related dopamine levels and rescued PD neuron viability. The use of chemical sensors of chaperome networks on hPSC-derived lineages may present a general strategy to identify molecular events associated with neurodegenerative diseases.
AB - Environmental and genetic risk factors contribute to Parkinson’s Disease (PD) pathogenesis and the associated midbrain dopamine (mDA) neuron loss. Here, we identify early PD pathogenic events by developing methodology that utilizes recent innovations in human pluripotent stem cells (hPSC) and chemical sensors of HSP90-incorporating chaperome networks. We show that events triggered by PD-related genetic or toxic stimuli alter the neuronal proteome, thereby altering the stress-specific chaperome networks, which produce changes detected by chemical sensors. Through this method we identify STAT3 and NF-κB signaling activation as examples of genetic stress, and phospho-tyrosine hydroxylase (TH) activation as an example of toxic stress-induced pathways in PD neurons. Importantly, pharmacological inhibition of the stress chaperome network reversed abnormal phospho-STAT3 signaling and phospho-TH-related dopamine levels and rescued PD neuron viability. The use of chemical sensors of chaperome networks on hPSC-derived lineages may present a general strategy to identify molecular events associated with neurodegenerative diseases.
UR - http://www.scopus.com/inward/record.url?scp=85055076176&partnerID=8YFLogxK
U2 - 10.1038/s41467-018-06486-6
DO - 10.1038/s41467-018-06486-6
M3 - Journal articles
C2 - 30341316
AN - SCOPUS:85055076176
SN - 1751-8628
VL - 9
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 4345
ER -