TY - JOUR
T1 - High performance 3D PET reconstruction using spherical basis functions on a polar grid
AU - Cabello, J.
AU - Gillam, J. E.
AU - Rafecas, M.
PY - 2012
Y1 - 2012
N2 - Statistical iterative methods are a widely used method of image reconstruction in emission tomography. Traditionally, the image space is modelled as a combination of cubic voxels as a matter of simplicity. After reconstruction, images are routinely filtered to reduce statistical noise at the cost of spatial resolution degradation. An alternative to produce lower noise during reconstruction is to model the image space with spherical basis functions. These basis functions overlap in space producing a significantly large number of non-zero elements in the system response matrix (SRM) to store, which additionally leads to long reconstruction times. These two problems are partly overcome by exploiting spherical symmetries, although computation time is still slower compared to non-overlapping basis functions. In this work, we have implemented the reconstruction algorithm using Graphical Processing Unit (GPU) technology for speed and a precomputed Monte-Carlo-calculated SRM for accuracy. The reconstruction time achieved using spherical basis functions on a GPU was 4.3 times faster than the Central Processing Unit (CPU) and 2.5 times faster than a CPU-multi-core parallel implementation using eight cores. Overwriting hazards are minimized by combining a random line of response ordering and constrained atomic writing. Small differences in image quality were observed between implementations. Copyright © 2012 J. Cabello et al.
AB - Statistical iterative methods are a widely used method of image reconstruction in emission tomography. Traditionally, the image space is modelled as a combination of cubic voxels as a matter of simplicity. After reconstruction, images are routinely filtered to reduce statistical noise at the cost of spatial resolution degradation. An alternative to produce lower noise during reconstruction is to model the image space with spherical basis functions. These basis functions overlap in space producing a significantly large number of non-zero elements in the system response matrix (SRM) to store, which additionally leads to long reconstruction times. These two problems are partly overcome by exploiting spherical symmetries, although computation time is still slower compared to non-overlapping basis functions. In this work, we have implemented the reconstruction algorithm using Graphical Processing Unit (GPU) technology for speed and a precomputed Monte-Carlo-calculated SRM for accuracy. The reconstruction time achieved using spherical basis functions on a GPU was 4.3 times faster than the Central Processing Unit (CPU) and 2.5 times faster than a CPU-multi-core parallel implementation using eight cores. Overwriting hazards are minimized by combining a random line of response ordering and constrained atomic writing. Small differences in image quality were observed between implementations. Copyright © 2012 J. Cabello et al.
UR - https://www.mendeley.com/catalogue/fdec83f2-d972-3f47-9a39-5d11ff71a3fe/
U2 - 10.1155/2012/452910
DO - 10.1155/2012/452910
M3 - Journal articles
SN - 1687-4188
VL - 2012
JO - International Journal of Biomedical Imaging
JF - International Journal of Biomedical Imaging
ER -