TY - JOUR
T1 - Has Sulfolobus an Archaic Respiratory System? Structure, Function and Genes of its Components
AU - Schäfer, Günter
AU - Anemüller, Stefan
AU - Moll, Ralf
AU - Gleissner, Michael
AU - Schmidt, Christian L.
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 1993
Y1 - 1993
N2 - The electron transport system of Sulfolobus acidocaldarius has been shown to act as a respiration driven proton pump. Essentially it is composed of three functional units: the NADH-and substrate dehydrogenases, caldariella quinone as a pool of bound hydrogen, and one or two terminal oxidases catalyzing its reoxidation by molecular oxygen. The latter systems contain only FeS proteins, b- and a-type cytochromes; c-type cytochromes are absent. The cytochrome aa3 from Sulfolobus is the first heme-a containing terminal oxidase shown to act as a quinol oxidase. Its redox centers were investigated by redox potentiometry, EPR- and Raman-resonance spectroscopy, revealing a typical binuclear heme-a/Cu center, however displaying unusual structural interaction between the formyl substituents and the protein environment; the redox potentials of low and high spin centers were titrated. A cytochrome a587 atypical for any other species emerged to contain a low spin, low potential heme-a center, mimicing the function of a b-type cytochrome and likely to be the product of the SOX-C gene from the SOX operon (Lübben et al., 1992). The aa3 oxidase when reconstituted into liposomes is shown to generate a proton motive force. Though Sulfolobus contains no equivalent to the bc1 complex of classical respiratory chains, in addition to the caldariella quinol oxidase a Rieske-type FeS protein could be detected in its plasma membrane; it was isolated and characterized by EPR, strongly suggesting a participation in respiratory electron transport. Its redox potential displays significant pH dependence revealing two distinct pKs. It remains to be established whether it interacts with the aa3 oxidase or other electron carriers. A cytochrome b562 appears to be present constitutively in small amount, while cytochrome-b558 is the major heme-b containing compound in the membrane of Sulfolobus. A previously envisaged function as an alternate terminal oxidase is still questionable. Recently conditions were found allowing to modulate its expression dramatically, leading to almost complete suppression of cytochrome-b558. Based on differential spectroscopy and redox titrations a tentative scheme of the electron transport system from Sulfolobus is proposed. Sequence comparisons are discussed with regard to the question, as to whether it resembles a primitive “archaic” precursor form of more complex “modern” respiratory systems, or whether it evolved by aquisition and adaptation of “foreign” genes.
AB - The electron transport system of Sulfolobus acidocaldarius has been shown to act as a respiration driven proton pump. Essentially it is composed of three functional units: the NADH-and substrate dehydrogenases, caldariella quinone as a pool of bound hydrogen, and one or two terminal oxidases catalyzing its reoxidation by molecular oxygen. The latter systems contain only FeS proteins, b- and a-type cytochromes; c-type cytochromes are absent. The cytochrome aa3 from Sulfolobus is the first heme-a containing terminal oxidase shown to act as a quinol oxidase. Its redox centers were investigated by redox potentiometry, EPR- and Raman-resonance spectroscopy, revealing a typical binuclear heme-a/Cu center, however displaying unusual structural interaction between the formyl substituents and the protein environment; the redox potentials of low and high spin centers were titrated. A cytochrome a587 atypical for any other species emerged to contain a low spin, low potential heme-a center, mimicing the function of a b-type cytochrome and likely to be the product of the SOX-C gene from the SOX operon (Lübben et al., 1992). The aa3 oxidase when reconstituted into liposomes is shown to generate a proton motive force. Though Sulfolobus contains no equivalent to the bc1 complex of classical respiratory chains, in addition to the caldariella quinol oxidase a Rieske-type FeS protein could be detected in its plasma membrane; it was isolated and characterized by EPR, strongly suggesting a participation in respiratory electron transport. Its redox potential displays significant pH dependence revealing two distinct pKs. It remains to be established whether it interacts with the aa3 oxidase or other electron carriers. A cytochrome b562 appears to be present constitutively in small amount, while cytochrome-b558 is the major heme-b containing compound in the membrane of Sulfolobus. A previously envisaged function as an alternate terminal oxidase is still questionable. Recently conditions were found allowing to modulate its expression dramatically, leading to almost complete suppression of cytochrome-b558. Based on differential spectroscopy and redox titrations a tentative scheme of the electron transport system from Sulfolobus is proposed. Sequence comparisons are discussed with regard to the question, as to whether it resembles a primitive “archaic” precursor form of more complex “modern” respiratory systems, or whether it evolved by aquisition and adaptation of “foreign” genes.
UR - http://www.scopus.com/inward/record.url?scp=0028315933&partnerID=8YFLogxK
U2 - 10.1016/S0723-2020(11)80324-3
DO - 10.1016/S0723-2020(11)80324-3
M3 - Journal articles
AN - SCOPUS:0028315933
SN - 0723-2020
VL - 16
SP - 544
EP - 555
JO - Systematic and Applied Microbiology
JF - Systematic and Applied Microbiology
IS - 4
ER -