Abstract
Pathologic and epidemiologic studies suggest that Parkinson disease (PD) may in some cases start in the enteric nervous system and spread via the vagal nerve to the brainstem. Mounting evidence suggests that the gut microbiome plays an important role in the communication between gut and brain and that alteration of the gut microbiome is involved in the pathogenesis of numerous diseases, including Parkinson disease. The aim of this study was to determine whether Parkinson disease is associated with qualitative or quantitative changes in the gut microbiome. We analyzed the gut microbiome in 29 PD cases and 29 age-matched controls by next-generation-sequencing of the 16S rRNA gene and compared diversity indices and bacterial abundances between cases and controls. Alpha diversity measures and the abundance of major phyla did not differ between cases and controls. Beta diversity analyses and analysis on the bacterial family level revealed significant differences between cases and controls for four bacterial families. In keeping with recently published studies, Lactobacillaceae were more abundant in cases. Barnesiellaceae and Enterococcacea were also more abundant in cases in this study but not in other studies. Larger studies, accounting for drug effects and further functional investigations of the gut microbiome are necessary to delineate the role of the gut microbiome in the pathogenesis of PD.
Original language | English |
---|---|
Journal | Brain Research |
Volume | 1667 |
Pages (from-to) | 41-45 |
Number of pages | 5 |
ISSN | 0006-8993 |
DOIs | |
Publication status | Published - 15.07.2017 |
Research Areas and Centers
- Academic Focus: Center for Infection and Inflammation Research (ZIEL)