Genetic modification increases the survival and the neuroregenerative properties of transplanted neural stem cells

Irina Korshunova, Sina Rhein, Diego García-González, Ines Stölting, Ulrich Pfisterer, Anna Barta, Oksana Dmytriyeva, Agnete Kirkeby, Markus Schwaninger, Konstantin Khodosevich*

*Corresponding author for this work
1 Citation (Scopus)

Abstract

Cell therapy raises hopes high for better treatment of brain disorders. However, the majority of transplanted cells often die soon after transplantation, and those that survive initially continue to die in the subacute phase, diminishing the impact of transplantations. In this study, we genetically modified transplanted human neural stem cells (hNSCs), from 2 distant embryonic stem cell lines (H9 and RC17), to express 1 of 4 prosurvival factors — Hif1a, Akt1, Bcl-2, or Bcl-xl — and studied how these modifications improve short- and long-term survival of transplanted hNSCs. All genetic modifications dramatically increased survival of the transplanted hNSCs. Importantly, 3 out of 4 modifications also enhanced the exit of hNSCs from the cell cycle, thus avoiding aberrant growth of the transplants. Bcl-xl expression provided the strongest protection of transplanted cells, reducing both immediate and delayed cell death, and stimulated hNSC differentiation toward neuronal and oligodendroglial lineages. By designing hNSCs with drug-controlled expression of Bcl-xl, we demonstrated that short-term expression of a prosurvival factor can ensure the long-term survival of transplanted cells. Importantly, transplantation of Bcl-xl–expressing hNSCs into mice suffering from stroke improved behavioral outcome and recovery of motor activity in mice.

Original languageEnglish
Article numbere126268
JournalJCI insight
Volume5
Issue number4
ISSN2379-3708
DOIs
Publication statusPublished - 27.02.2020

Research Areas and Centers

  • Academic Focus: Center for Brain, Behavior and Metabolism (CBBM)

Fingerprint

Dive into the research topics of 'Genetic modification increases the survival and the neuroregenerative properties of transplanted neural stem cells'. Together they form a unique fingerprint.

Cite this