TY - JOUR
T1 - Functional outcome of tongue motions with selective hypoglossal nerve stimulation in patients with obstructive sleep apnea
AU - Heiser, C.
AU - Maurer, J. T.
AU - Steffen, A.
N1 - Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Background: Selective upper airway stimulation of the hypoglossal nerve is a novel therapy option for obstructive sleep apnea. Different tongue motions were observed after surgery during active therapy. Methods: We examined tongue motions in 14 patients (mean age 51 ± 10 years) who received an implantation of an upper airway stimulation system (Inspire Medical Systems) from September 2013 to February 2014 in three different implantation centers in Germany after surgery. Sleep recording was performed preoperatively: 2 months (M02) and 6 months (M06) after surgery. Results: There were three different tongue motions observed after surgery at 1 month (M01), M02, and M06 after surgery: bilateral protrusion (BP), right protrusion (RP), and mixed activation (MA). At M01: 10 BP, 2 RP, and 2 MA; at M02: 12 BP, 0 RP, and 2 MA; and at M06: 12 BP, 0 RP, and 2 MA could be detected. The average apnea-hypopnea index (AHI) was reduced from 32.5 ± 14.2/h before surgery to 17.9 ± 23.3/h at M02 and 14.1 ± 19.8/h at M06. An increased reduction in AHI was found in BP and RP group (Baseline: 29.6 ± 12.6/h; M02: 12.06 ± 14.1/h; M06: 9.7 ± 12.6/h) compared to the MA group (Baseline 49.6 ± 13.8/h; M02: 49.7 ± 5.1/h; M06: 40.5 ± 4.1/h). Conclusions: These findings suggest that the postoperative tongue motions in upper airway stimulation are associated with the therapy outcome. The stimulation electrode placement on the hypoglossal nerve for selective muscle recruitment may play a role in the mechanism of action.
AB - Background: Selective upper airway stimulation of the hypoglossal nerve is a novel therapy option for obstructive sleep apnea. Different tongue motions were observed after surgery during active therapy. Methods: We examined tongue motions in 14 patients (mean age 51 ± 10 years) who received an implantation of an upper airway stimulation system (Inspire Medical Systems) from September 2013 to February 2014 in three different implantation centers in Germany after surgery. Sleep recording was performed preoperatively: 2 months (M02) and 6 months (M06) after surgery. Results: There were three different tongue motions observed after surgery at 1 month (M01), M02, and M06 after surgery: bilateral protrusion (BP), right protrusion (RP), and mixed activation (MA). At M01: 10 BP, 2 RP, and 2 MA; at M02: 12 BP, 0 RP, and 2 MA; and at M06: 12 BP, 0 RP, and 2 MA could be detected. The average apnea-hypopnea index (AHI) was reduced from 32.5 ± 14.2/h before surgery to 17.9 ± 23.3/h at M02 and 14.1 ± 19.8/h at M06. An increased reduction in AHI was found in BP and RP group (Baseline: 29.6 ± 12.6/h; M02: 12.06 ± 14.1/h; M06: 9.7 ± 12.6/h) compared to the MA group (Baseline 49.6 ± 13.8/h; M02: 49.7 ± 5.1/h; M06: 40.5 ± 4.1/h). Conclusions: These findings suggest that the postoperative tongue motions in upper airway stimulation are associated with the therapy outcome. The stimulation electrode placement on the hypoglossal nerve for selective muscle recruitment may play a role in the mechanism of action.
UR - http://www.scopus.com/inward/record.url?scp=84940094411&partnerID=8YFLogxK
U2 - 10.1007/s11325-015-1237-4
DO - 10.1007/s11325-015-1237-4
M3 - Journal articles
C2 - 26315466
AN - SCOPUS:84940094411
SN - 1520-9512
VL - 20
SP - 553
EP - 560
JO - Sleep and Breathing
JF - Sleep and Breathing
IS - 2
ER -