From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design

25 Citations (Scopus)

Abstract

This review focuses on the important contributions that macromolecular crystallography has made over the past 12 years to elucidating structures and mechanisms of the essential proteases of coronaviruses, the main protease (M(pro) ) and the papain-like protease (PL(pro) ). The role of X-ray crystallography in structure-assisted drug discovery against these targets is discussed. Aspects dealt with in this review include the emergence of the SARS coronavirus in 2002-2003 and of the MERS coronavirus 10 years later and the origins of these viruses. The crystal structure of the free SARS coronavirus M(pro) and its dependence on pH is discussed, as are efforts to design inhibitors on the basis of these structures. The mechanism of maturation of the enzyme from the viral polyprotein is still a matter of debate. The crystal structure of the SARS coronavirus PL(pro) and its complex with ubiquitin is also discussed, as is its orthologue from MERS coronavirus. Efforts at predictive structure-based inhibitor development for bat coronavirus M(pro) s to increase the preparedness against zoonotic transmission to man are described as well. The paper closes with a brief discussion of structure-based discovery of antivirals in an academic setting.

Original languageEnglish
JournalThe FEBS journal
Volume281
Issue number18
Pages (from-to)4085-4096
Number of pages12
DOIs
Publication statusPublished - 01.09.2014

Research Areas and Centers

  • Academic Focus: Center for Infection and Inflammation Research (ZIEL)

Coronavirus related work

  • Research on SARS-CoV-2 / COVID-19

Fingerprint

Dive into the research topics of 'From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design'. Together they form a unique fingerprint.

Cite this