Exploring sparsity in CNNs for medical image segmentation BRIEFnet

Mattias P. Heinrich*, Ozan Oktay

*Corresponding author for this work

Abstract

Deep convolutional neural networks can evidently achieve astonishing accuracies for multiple medical image analysis tasks, in particular segmentation and detection. However, the actual translation of deep learning into clinical practice is so far very limited, in part because their extensive computations rely on specialised GPU hardware that is not easily available in clinical environments.

Original languageEnglish
Title of host publicationBildverarbeitung für die Medizin 2018
EditorsAndreas Maier, Thomas Deserno, Heinz Handels, Klaus Hermann Maier-Hein, Christoph Palm, Thomas Tolxdorff
Number of pages2
Volume1
PublisherSpringer Verlag
Publication date01.01.2018
Edition211279
Pages40-41
ISBN (Print)978-3-662-56536-0
ISBN (Electronic)978-3-662-56537-7
DOIs
Publication statusPublished - 01.01.2018
EventBildverarbeitung für die Medizin 2018 - Lehrstuhl für Mustererkennung, Erlangen, Germany
Duration: 11.03.201813.03.2018
https://www.springer.com/us/book/9783662565360
http://www.bvm-workshop.org

Fingerprint

Dive into the research topics of 'Exploring sparsity in CNNs for medical image segmentation BRIEFnet'. Together they form a unique fingerprint.

Cite this