Abstract
C-arm X-ray systems need a high spatial accuracy for applications like cone beam computed tomography and 2D/3D overlay. One way to achieve the needed precision is a model-based calibration of the C-arm system. For such a calibration a kinematic and dynamic model of the system is constructed whose parameters are computed by pose measurements of the C-arm. Instead of common measurement systems used for a model-based calibration for robots like laser trackers, we use X-ray images of a calibration phantom to measure the C-arm pose. By the direct use of the imaging system, we overcome registration errors between the measurement device and the C-arm system. The C-arm pose measurement by X-ray imaging, the new measurement technique, has to be evaluated to check if the measurement accuracy is sufficient for the model-based calibration regarding the two mentioned applications. The scope of this work is a real world evaluation of the C-arm pose measurement accuracy with X-ray images of a calibration phantom using relative phantom movements and a laser tracker as ground truth.
Original language | German |
---|---|
Title of host publication | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
Publication date | 13.10.2016 |
Publication status | Published - 13.10.2016 |