TY - JOUR
T1 - Exome sequencing characterizes the somatic mutation spectrum of early serrated lesions in a patient with serrated polyposis syndrome (SPS)
AU - Horpaopan, Sukanya
AU - Kirfel, Jutta
AU - Peters, Sophia
AU - Kloth, Michael
AU - Hüneburg, Robert
AU - Altmüller, Janine
AU - Drichel, Dmitriy
AU - Odenthal, Margarete
AU - Kristiansen, Glen
AU - Strassburg, Christian
AU - Nattermann, Jacob
AU - Hoffmann, Per
AU - Nürnberg, Peter
AU - Büttner, Reinhard
AU - Thiele, Holger
AU - Kahl, Philip
AU - Spier, Isabel
AU - Aretz, Stefan
PY - 2017/11/29
Y1 - 2017/11/29
N2 - Background: Serrated or Hyperplastic Polyposis Syndrome (SPS, HPS) is a yet poorly defined colorectal cancer (CRC) predisposition characterised by the occurrence of multiple and/or large serrated polyps throughout the colon. A serrated polyp-CRC sequence (serrated pathway) of CRC formation has been postulated, however, to date only few molecular signatures of serrated neoplasia (BRAF, KRAS, RNF43 mutations, CpG Island Methylation, MSI) have been described in a subset of SPS patients and neither the etiology of the syndrome nor the distinct genetic alterations during tumorigenesis have been identified. Methods: To identify somatic point mutations in potential novel candidate genes of SPS-associated lesions and the involved pathways we performed exome sequencing of eleven early serrated polyps obtained from a 41 year-old female patient with clinically confirmed SPS. For data filtering and analysis, standard pipelines were used. Somatic mutations were identified by comparison with leukocyte DNA and were validated by Sanger sequencing. Results: The BRAF p.V600E or KRAS p.G12D mutation was identified in six polyps (~50%) and not found in polyps from the distal colon. In addition, we found seven unique rare somatic alterations of seven different genes in four serrated tumours, all of which are missense variants. The variant in ABI3BP and CATSPERB are predicted to be deleterious. No established cancer gene or candidate genes related to serrated tumorigenesis were affected. Conclusions: Somatic mutations seem to be rare events in early hyperplastic and serrated lesions of SPS patients. Neither frequently affected genes nor enrichment of specific pathways were observed. Thus, other alterations such as non-coding variants or epigenetic changes might be the major driving force of tumour progression in SPS.
AB - Background: Serrated or Hyperplastic Polyposis Syndrome (SPS, HPS) is a yet poorly defined colorectal cancer (CRC) predisposition characterised by the occurrence of multiple and/or large serrated polyps throughout the colon. A serrated polyp-CRC sequence (serrated pathway) of CRC formation has been postulated, however, to date only few molecular signatures of serrated neoplasia (BRAF, KRAS, RNF43 mutations, CpG Island Methylation, MSI) have been described in a subset of SPS patients and neither the etiology of the syndrome nor the distinct genetic alterations during tumorigenesis have been identified. Methods: To identify somatic point mutations in potential novel candidate genes of SPS-associated lesions and the involved pathways we performed exome sequencing of eleven early serrated polyps obtained from a 41 year-old female patient with clinically confirmed SPS. For data filtering and analysis, standard pipelines were used. Somatic mutations were identified by comparison with leukocyte DNA and were validated by Sanger sequencing. Results: The BRAF p.V600E or KRAS p.G12D mutation was identified in six polyps (~50%) and not found in polyps from the distal colon. In addition, we found seven unique rare somatic alterations of seven different genes in four serrated tumours, all of which are missense variants. The variant in ABI3BP and CATSPERB are predicted to be deleterious. No established cancer gene or candidate genes related to serrated tumorigenesis were affected. Conclusions: Somatic mutations seem to be rare events in early hyperplastic and serrated lesions of SPS patients. Neither frequently affected genes nor enrichment of specific pathways were observed. Thus, other alterations such as non-coding variants or epigenetic changes might be the major driving force of tumour progression in SPS.
UR - http://www.scopus.com/inward/record.url?scp=85036515777&partnerID=8YFLogxK
U2 - 10.1186/s13053-017-0082-9
DO - 10.1186/s13053-017-0082-9
M3 - Journal articles
AN - SCOPUS:85036515777
SN - 1731-2302
VL - 15
JO - Hereditary Cancer in Clinical Practice
JF - Hereditary Cancer in Clinical Practice
IS - 1
M1 - 22
ER -