Estimation of Multiple Local Orientations in Image Signals

Til Aach, Ingo Stuke, Cicero Mota, Erhardt Barth

Abstract

Local orientation estimation can be posed as the problem of finding the minimum grey level variance axis within a local neighbourhood. In 2D image signals, this corresponds to the eigensystem analysis of a 2 × 2-tensor, which yields valid results for single orientations. We describe extensions to multiple overlaid orientations, which may be caused by transparent objects, crossings, bifurcations, corners etc. Multiple orientation detection is based on the eigensystem analysis of an appropriately extended tensor, yielding so-called mixed orientation parameters. These mixed orientation parameters can be regarded as another tensor built from the sought individual orientation parameters. We show how the mixed orientation tensor can be decomposed into the individual orientations by finding the roots of a polynomial. Applications are, e.g., in directional filtering and interpolation, feature extraction for corners or crossings, and signal separation.

Original languageEnglish
Pages553-556
Number of pages4
Publication statusPublished - 28.09.2004
EventProceedings - IEEE International Conference on Acoustics, Speech, and Signal Processing 2004 - Montreal, Canada
Duration: 17.05.200421.05.2004
Conference number: 63500

Conference

ConferenceProceedings - IEEE International Conference on Acoustics, Speech, and Signal Processing 2004
Country/TerritoryCanada
City Montreal
Period17.05.0421.05.04

Fingerprint

Dive into the research topics of 'Estimation of Multiple Local Orientations in Image Signals'. Together they form a unique fingerprint.

Cite this