Enhancing the efficiency of a field free line scanning device for magnetic particle imaging

M. Erbe, T.F. Sattel, T. Knopp, T.M. Buzug

Abstract

Magnetic particle imaging (MPI) is a novel functional imaging modality capable of detecting a distribution of superparamagnetic iron oxide (SPIO) tracer material in-vivo in 3D and real-time. Conventional MPI uses a sensitive spot method to scan the region of interest. To increase the sensitivity, however, an alternative encoding scheme using a line detection method was introduced. To provide the magnetic fields needed for dynamic line scanning in MPI a very efficient imager with respect to power consumption is needed. At the same time, the imager needs to provide a high magnetic field quality to ensure that no artifacts are introduced using efficient Radon-based reconstruction methods arising for a line encoding scheme. In this work, the most efficient dynamic FFL scanner design is presented, which outperforms all formerly introduced scanners with respect to magnetic field quality as well as electrical power consumption.
Original languageEnglish
Title of host publication2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)
Number of pages3
PublisherIEEE
Publication date01.10.2012
Pages2566-2568
ISBN (Print)978-1-4673-2028-3
ISBN (Electronic)978-1-4673-2030-6
DOIs
Publication statusPublished - 01.10.2012
Event2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) - Anaheim, United States
Duration: 27.10.201203.11.2012

Fingerprint

Dive into the research topics of 'Enhancing the efficiency of a field free line scanning device for magnetic particle imaging'. Together they form a unique fingerprint.

Cite this