Electronic structure of Fe-bearing lazulites

M. Grodzicki*, G. J. Redhammer, G. Amthauer, V. Schünemann, A. X. Trautwein, B. Velickov, P. Schmid-Beurmann

*Corresponding author for this work
12 Citations (Scopus)


The Fe end-members scorzalite [Fe2+Al2 3+(PO4 2(OH)2] and barbosalite [Fe2+Fe2 3+(PO4 2(OH)2] of the lazulite series have been investigated by Mössbauer and diffuse reflectance spectroscopy, and by electronic structure calculations in the local spin density approximation. The measured quadrupole splitting (ΔEQ = -3.99 mm/s) in scorzalite is in quantitative agreement with the calculated value (ΔEQ = -3.90 mm/s), as well as its temperature dependence. The optical spectrum of barbosalite can be resolved into three peaks at 8985 cm-1, 10980 cm-1, and 14110 cm-1. These positions correlate well with the two calculated spin-allowed d-d transitions at 8824 cm-1 and 11477 cm-1, and with an intervalence charge transfer transition at about 14200 cm-1. The calculated low-temperature magnetic structure of barbosalite is characterized by a strong antiferromagnetic coupling (J = -84.6 cm-1) within the octahedral Fe3+-chains, whereas a weak antiferromagnetic coupling within the trioctahedral subunit cannot be considered as conclusive. The analysis of the charge and spin densities reveals that more than 90% of the covalent part of the iron-ligand bonds arises from the Fe(4s,4p)-electrons. Clusters of at least 95 atoms are required to reproduce the available experimental data with quantitative accuracy.

Original languageEnglish
JournalAmerican Mineralogist
Issue number4
Pages (from-to)481-488
Number of pages8
Publication statusPublished - 01.01.2003


Dive into the research topics of 'Electronic structure of Fe-bearing lazulites'. Together they form a unique fingerprint.

Cite this