Abstract
The abilities to predict future rewards and assess the value of reward delivery are crucial aspects of adaptive behavior. While the mesolimbic system, including dopaminergic midbrain, ventral striatum and prefrontal cortex have long been associated with reward processing, recent studies also indicate a prominent role of early visual brain regions. However, the precise underlying neural mechanisms still remain unclear. To address this issue, we presented participants with visual cues predicting rewards of high and low magnitudes and probability (2x2 factorial design), while neural activity was scanned using magnetoencephalography. Importantly, one group of participants received 150 mg of the dopamine precursor levodopa prior to the experiment, while another group received a placebo. For the placebo group, neural signals of reward probability (but not magnitude) emerged at -100 ms after cue presentation at occipital sensors in the event-related magnetic fields. Importantly, these probability signals were absent in the levodopa group indicating a close link. Moreover, levodopa administration reduced oscillatory power in the high (20-30 Hz) and low (13-20 Hz) beta band during both reward anticipation and delivery. Taken together, our findings indicate that visual brain regions are involved in coding prospective reward probability but not magnitude and that these effects are modulated by dopamine.
Original language | English |
---|---|
Article number | e108886 |
Journal | PLoS ONE |
Volume | 9 |
Issue number | 10 |
ISSN | 1553-7390 |
DOIs | |
Publication status | Published - 06.10.2014 |
Research Areas and Centers
- Academic Focus: Center for Brain, Behavior and Metabolism (CBBM)