Abstract
Metastases are responsible for cancer deaths, but the molecular alterations leading to tumor progression are unclear. Overexpression of the E2F1 transcription factor is common in high-grade tumors that are associated with poor patient survival. To investigate the association of enhanced E2F1 activity with aggressive phenotype, we performed a gene-specific silencing approach in a metastatic melanoma model. Knockdown of endogenous E2F1 via E2F1 small hairpin RNA (shRNA) expression increased E-cadherin expression of metastatic SK-Mel-147 melanoma cells and reduced their invasive potential but not their proliferative activity. Although growth rates of SK-Mel-147 and SK-Mel-103 xenograft tumors expressing E2F1 shRNA or control shRNA were similar, mice implanted with cells expressing E2F1 shRNA had a smaller area of metastases per lung than control mice (n=3 mice per group; 5% vs 46%, difference=41%, 95% confidence interval=15% to 67%; P =. 01; one-way analysis of variance). We identified epidermal growth factor receptor as a direct target of E2F1 and demonstrated that inhibition of receptor signaling abrogates E2F1-induced invasiveness, emphasizing the importance of the E2F1-epidermal growth factor receptor interaction as a driving force in melanoma progression that may serve as a paradigm for E2F1-induced metastasis in other human cancers.
Original language | English |
---|---|
Journal | Journal of the National Cancer Institute |
Volume | 102 |
Issue number | 2 |
Pages (from-to) | 127-133 |
Number of pages | 7 |
ISSN | 0027-8874 |
DOIs | |
Publication status | Published - 01.2010 |
Research Areas and Centers
- Academic Focus: Center for Infection and Inflammation Research (ZIEL)