Abstract
Efficient clearance of bacteremia prevents life-threatening disease. Platelet binding to intravascular bacteria, a process involving platelet glycoprotein GPIb and bacterial opsonization with activated complement C3, influences blood clearance and anti-infective immunity. Using intravital microscopy of the bloodstream of mice infected with Listeria monocytogenes, we show that bacterial clearance is not a uniform process but a “dual-track” mechanism consisting of parallel “fast” and “slow” pathways. “Slow clearance” is regulated by time-dependent bacterial opsonization, stochastic platelet binding, and capture of bacteria-platelet-complexes via the complement receptor of the immunoglobulin superfamily, CRIg. The mechanism spares some bacteria from “fast clearance” and rapid destruction in the liver via Kupffer cell scavenger receptors, keeping them available for adaptive immunity induction by splenic CD8α+ dendritic cells. We consistently find “fast” and “slow” clearance patterns for a broad panel of other Gram+ and Gram− bacteria. Thus, dual-track clearance balances rapid restoration of blood sterility with induction of specific antibacterial immunity.
| Original language | English |
|---|---|
| Journal | Cell Host and Microbe |
| Volume | 20 |
| Issue number | 1 |
| Pages (from-to) | 36-48 |
| Number of pages | 13 |
| ISSN | 1931-3128 |
| DOIs | |
| Publication status | Published - 13.07.2016 |
Funding
We thank S. Gordon (Oxford) for input and critical discussion; M.C. Carroll (Harvard Medical School), S. Gordon (Oxford University), C.M. Ballantyne (Baylor College of Medicine), and B. Nieswandt (University of Würzburg) for kindly providing mouse strains; the diagnostics department of the Institute for Medical Microbiology, Immunology and Hygiene (Technische Universität München) for providing ATCC bacterial reference strains; L. Henkel, M. Schiemann, and I. Andrae for expert flow cytometry cell sorting; and P. Graef for experimental assistance. We gratefully acknowledge support by the Technische Universität München Graduate School. Funded by German Research Foundation (DFG) grant SFB 914 (projects Z01 and B02) to S.M. and (project B04) to D.H.B. and A.V. M.L.C. is a current employee of Genentech, Inc. but has no financial conflict of interest.
Research Areas and Centers
- Academic Focus: Center for Infection and Inflammation Research (ZIEL)