TY - JOUR
T1 - Dual-Track Clearance of Circulating Bacteria Balances Rapid Restoration of Blood Sterility with Induction of Adaptive Immunity
AU - Broadley, Steven P.
AU - Plaumann, Ann
AU - Coletti, Raffaele
AU - Lehmann, Christin
AU - Wanisch, Andreas
AU - Seidlmeier, Amelie
AU - Esser, Knud
AU - Luo, Shanshan
AU - Rämer, Patrick C.
AU - Massberg, Steffen
AU - Busch, Dirk H.
AU - van Lookeren Campagne, Menno
AU - Verschoor, Admar
PY - 2016/7/13
Y1 - 2016/7/13
N2 - Efficient clearance of bacteremia prevents life-threatening disease. Platelet binding to intravascular bacteria, a process involving platelet glycoprotein GPIb and bacterial opsonization with activated complement C3, influences blood clearance and anti-infective immunity. Using intravital microscopy of the bloodstream of mice infected with Listeria monocytogenes, we show that bacterial clearance is not a uniform process but a “dual-track” mechanism consisting of parallel “fast” and “slow” pathways. “Slow clearance” is regulated by time-dependent bacterial opsonization, stochastic platelet binding, and capture of bacteria-platelet-complexes via the complement receptor of the immunoglobulin superfamily, CRIg. The mechanism spares some bacteria from “fast clearance” and rapid destruction in the liver via Kupffer cell scavenger receptors, keeping them available for adaptive immunity induction by splenic CD8α+ dendritic cells. We consistently find “fast” and “slow” clearance patterns for a broad panel of other Gram+ and Gram− bacteria. Thus, dual-track clearance balances rapid restoration of blood sterility with induction of specific antibacterial immunity.
AB - Efficient clearance of bacteremia prevents life-threatening disease. Platelet binding to intravascular bacteria, a process involving platelet glycoprotein GPIb and bacterial opsonization with activated complement C3, influences blood clearance and anti-infective immunity. Using intravital microscopy of the bloodstream of mice infected with Listeria monocytogenes, we show that bacterial clearance is not a uniform process but a “dual-track” mechanism consisting of parallel “fast” and “slow” pathways. “Slow clearance” is regulated by time-dependent bacterial opsonization, stochastic platelet binding, and capture of bacteria-platelet-complexes via the complement receptor of the immunoglobulin superfamily, CRIg. The mechanism spares some bacteria from “fast clearance” and rapid destruction in the liver via Kupffer cell scavenger receptors, keeping them available for adaptive immunity induction by splenic CD8α+ dendritic cells. We consistently find “fast” and “slow” clearance patterns for a broad panel of other Gram+ and Gram− bacteria. Thus, dual-track clearance balances rapid restoration of blood sterility with induction of specific antibacterial immunity.
UR - http://www.scopus.com/inward/record.url?scp=84991104883&partnerID=8YFLogxK
U2 - 10.1016/j.chom.2016.05.023
DO - 10.1016/j.chom.2016.05.023
M3 - Journal articles
C2 - 27345696
AN - SCOPUS:84991104883
SN - 1931-3128
VL - 20
SP - 36
EP - 48
JO - Cell Host and Microbe
JF - Cell Host and Microbe
IS - 1
ER -