TY - JOUR
T1 - Drug repurposing screen identifies lonafarnib as respiratory syncytial virus fusion protein inhibitor
AU - Sake, Svenja M
AU - Zhang, Xiaoyu
AU - Rajak, Manoj Kumar
AU - Urbanek-Quaing, Melanie
AU - Carpentier, Arnaud
AU - Gunesch, Antonia P
AU - Grethe, Christina
AU - Matthaei, Alina
AU - Rückert, Jessica
AU - Galloux, Marie
AU - Larcher, Thibaut
AU - Le Goffic, Ronan
AU - Hontonnou, Fortune
AU - Chatterjee, Arnab K
AU - Johnson, Kristen
AU - Morwood, Kaycie
AU - Rox, Katharina
AU - Elgaher, Walid A M
AU - Huang, Jiabin
AU - Wetzke, Martin
AU - Hansen, Gesine
AU - Fischer, Nicole
AU - Eléouët, Jean-Francois
AU - Rameix-Welti, Marie-Anne
AU - Hirsch, Anna K H
AU - Herold, Elisabeth
AU - Empting, Martin
AU - Lauber, Chris
AU - Schulz, Thomas F
AU - Krey, Thomas
AU - Haid, Sibylle
AU - Pietschmann, Thomas
N1 - © 2024. The Author(s).
PY - 2024/2/8
Y1 - 2024/2/8
N2 - Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory tract infection in infants, older adults and the immunocompromised. Effective directly acting antivirals are not yet available for clinical use. To address this, we screen the ReFRAME drug-repurposing library consisting of 12,000 small molecules against RSV. We identify 21 primary candidates including RSV F and N protein inhibitors, five HSP90 and four IMPDH inhibitors. We select lonafarnib, a licensed farnesyltransferase inhibitor, and phase III candidate for hepatitis delta virus (HDV) therapy, for further follow-up. Dose-response analyses and plaque assays confirm the antiviral activity (IC50: 10-118 nM). Passaging of RSV with lonafarnib selects for phenotypic resistance and fixation of mutations in the RSV fusion protein (T335I and T400A). Lentiviral pseudotypes programmed with variant RSV fusion proteins confirm that lonafarnib inhibits RSV cell entry and that these mutations confer lonafarnib resistance. Surface plasmon resonance reveals RSV fusion protein binding of lonafarnib and co-crystallography identifies the lonafarnib binding site within RSV F. Oral administration of lonafarnib dose-dependently reduces RSV virus load in a murine infection model using female mice. Collectively, this work provides an overview of RSV drug repurposing candidates and establishes lonafarnib as a bona fide fusion protein inhibitor.
AB - Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory tract infection in infants, older adults and the immunocompromised. Effective directly acting antivirals are not yet available for clinical use. To address this, we screen the ReFRAME drug-repurposing library consisting of 12,000 small molecules against RSV. We identify 21 primary candidates including RSV F and N protein inhibitors, five HSP90 and four IMPDH inhibitors. We select lonafarnib, a licensed farnesyltransferase inhibitor, and phase III candidate for hepatitis delta virus (HDV) therapy, for further follow-up. Dose-response analyses and plaque assays confirm the antiviral activity (IC50: 10-118 nM). Passaging of RSV with lonafarnib selects for phenotypic resistance and fixation of mutations in the RSV fusion protein (T335I and T400A). Lentiviral pseudotypes programmed with variant RSV fusion proteins confirm that lonafarnib inhibits RSV cell entry and that these mutations confer lonafarnib resistance. Surface plasmon resonance reveals RSV fusion protein binding of lonafarnib and co-crystallography identifies the lonafarnib binding site within RSV F. Oral administration of lonafarnib dose-dependently reduces RSV virus load in a murine infection model using female mice. Collectively, this work provides an overview of RSV drug repurposing candidates and establishes lonafarnib as a bona fide fusion protein inhibitor.
U2 - 10.1038/s41467-024-45241-y
DO - 10.1038/s41467-024-45241-y
M3 - Journal articles
C2 - 38332002
SN - 1751-8628
VL - 15
SP - 1173
JO - Nature Communications
JF - Nature Communications
IS - 1
ER -