Distinct surveillance pathway for immunopathology during acute infection via autophagy and SR-BI

Susanne Pfeiler, Avinash B. Khandagale, Astrid Magenau, Maryana Nichols, Harry F.G. Heijnen, Franz Rinninger, Tilman Ziegler, Stephanie Seveau, Sören Schubert, Stefan Zahler, Admar Verschoor, Eicke Latz, Steffen Massberg, Katharina Gaus, Bernd Engelmann*

*Corresponding author for this work
9 Citations (Scopus)

Abstract

The mechanisms protecting from immunopathology during acute bacterial infections are incompletely known. We found that in response to apoptotic immune cells and live or dead Listeria monocytogenes scavenger receptor BI (SR-BI), an anti-atherogenic lipid exchange mediator, activated internalization mechanisms with characteristics of macropinocytosis and, assisted by Golgi fragmentation, initiated autophagic responses. This was supported by scavenger receptor-induced local increases in membrane cholesterol concentrations which generated lipid domains particularly in cell extensions and the Golgi. SR-BI was a key driver of beclin-1-dependent autophagy during acute bacterial infection of the liver and spleen. Autophagy regulated tissue infiltration of neutrophils, suppressed accumulation of Ly6C+ (inflammatory) macrophages, and prevented hepatocyte necrosis in the core of infectious foci. Perifocal levels of Ly6C+ macrophages and Ly6C- macrophages were unaffected, indicating predominant regulation of the focus core. SR-BI-triggered autophagy promoted co-elimination of apoptotic immune cells and dead bacteria but barely influenced bacterial sequestration and survival or inflammasome activation, thus exclusively counteracting damage inflicted by immune responses. Hence, SR-BI-and autophagy promote a surveillance pathway that partially responds to products of antimicrobial defenses and selectively prevents immunity-induced damage during acute infection. Our findings suggest that control of infection-associated immunopathology can be based on a unified defense operation.

Original languageEnglish
Article number34440
JournalScientific Reports
Volume6
ISSN2045-2322
DOIs
Publication statusPublished - 03.10.2016

Research Areas and Centers

  • Academic Focus: Center for Infection and Inflammation Research (ZIEL)

Fingerprint

Dive into the research topics of 'Distinct surveillance pathway for immunopathology during acute infection via autophagy and SR-BI'. Together they form a unique fingerprint.

Cite this