Distances of time series components by means of symbolic dynamics

Karsten Keller*, Katharina Wittfeld

*Corresponding author for this work
34 Citations (Scopus)


In this note we describe a simple method for visualizing time-dependent similarities and dissimilarities between the components of a high-dimensional time series. On the base of symbolic dynamics, the time series is turned into a series of matrices whose rows quantify pattern types in the components of the original series. For different scales we introduce distances between the components via the obtained pattern type distributions and approximate them in a one-dimensional manner. The method is illustrated for 19-channel EEG data.

Original languageEnglish
JournalInternational Journal of Bifurcation and Chaos in Applied Sciences and Engineering
Issue number2
Pages (from-to)693-703
Number of pages11
Publication statusPublished - 01.01.2004


Dive into the research topics of 'Distances of time series components by means of symbolic dynamics'. Together they form a unique fingerprint.

Cite this