TY - JOUR
T1 - Diagnostic performance of deep-learning-based screening methods for diabetic retinopathy in primary care—A meta-analysis
AU - Wewetzer, Larisa
AU - Held, Linda A.
AU - Steinhäuser, Jost
N1 - Publisher Copyright:
© 2021 Wewetzer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2021/8
Y1 - 2021/8
N2 - Background Diabetic retinopathy (DR) affects 10–24% of patients with diabetes mellitus type 1 or 2 in the primary care (PC) sector. As early detection is crucial for treatment, deep learning screening methods in PC setting could potentially aid in an accurate and timely diagnosis. Purpose The purpose of this meta-analysis was to determine the current state of knowledge regarding deep learning (DL) screening methods for DR in PC. Data sources A systematic literature search was conducted using Medline, Web of Science, and Scopus to identify suitable studies. Study selection Suitable studies were selected by two researchers independently. Studies assessing DL methods and the suitability of these screening systems (diagnostic parameters such as sensitivity and specificity, information on datasets and setting) in PC were selected. Excluded were studies focusing on lesions, applying conventional diagnostic imaging tools, conducted in secondary or tertiary care, and all publication types other than original research studies on human subjects. Data extraction The following data was extracted from included studies: authors, title, year of publication, objectives, participants, setting, type of intervention/method, reference standard, grading scale, outcome measures, dataset, risk of bias, and performance measures. Data synthesis and conclusion The summed sensitivity of all included studies was 87% and specificity was 90%. Given a prevalence of DR of 10% in patients with DM Type 2 in PC, the negative predictive value is 98% while the positive predictive value is 49%. Limitations Selected studies showed a high variation in sample size and quality and quantity of available data.
AB - Background Diabetic retinopathy (DR) affects 10–24% of patients with diabetes mellitus type 1 or 2 in the primary care (PC) sector. As early detection is crucial for treatment, deep learning screening methods in PC setting could potentially aid in an accurate and timely diagnosis. Purpose The purpose of this meta-analysis was to determine the current state of knowledge regarding deep learning (DL) screening methods for DR in PC. Data sources A systematic literature search was conducted using Medline, Web of Science, and Scopus to identify suitable studies. Study selection Suitable studies were selected by two researchers independently. Studies assessing DL methods and the suitability of these screening systems (diagnostic parameters such as sensitivity and specificity, information on datasets and setting) in PC were selected. Excluded were studies focusing on lesions, applying conventional diagnostic imaging tools, conducted in secondary or tertiary care, and all publication types other than original research studies on human subjects. Data extraction The following data was extracted from included studies: authors, title, year of publication, objectives, participants, setting, type of intervention/method, reference standard, grading scale, outcome measures, dataset, risk of bias, and performance measures. Data synthesis and conclusion The summed sensitivity of all included studies was 87% and specificity was 90%. Given a prevalence of DR of 10% in patients with DM Type 2 in PC, the negative predictive value is 98% while the positive predictive value is 49%. Limitations Selected studies showed a high variation in sample size and quality and quantity of available data.
UR - http://www.scopus.com/inward/record.url?scp=85112289020&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0255034
DO - 10.1371/journal.pone.0255034
M3 - Journal articles
C2 - 34375355
AN - SCOPUS:85112289020
VL - 16
JO - PLoS ONE
JF - PLoS ONE
IS - 8 August
M1 - e0255034
ER -