Abstract
Although, the human epithelium is constantly challenged by a broad spectrum of microorganisms, invasive infections are rather rare. Recent findings suggest the expression of antimicrobial peptides by skin cells in order to provide an innate defensive barrier. In particular, peptides of the β-defensin family offer antimicrobial activity against different pathogens including bacteria and fungi. Within this peptide family, hBD-1 is rather constitutively expressed while hBD-2 and hBD-3 expression depends on environmental conditions. The present paper introduces RT-competitive multiplex PCR as a precise tool to detect hBD-1 and hBD-2 expression on the transcriptional level. The method makes use of co-amplification of synthetic competitors along with referring wildtype targets. Competitor- and wildtype-derived products differ in size allowing signal discrimination using agarose gel electrophoresis. Regulation of gene transcripts is evaluated by comparison of competitor and corresponding wildtype signals. It was found that primary human keratinocytes stimulated with Escherichia coli cells for 8 h offered an upregulation of hBD-2 to about 2,000 fold, while hBD-1 was only marginally regulated. RT-competitive multiplex PCR is a simple and accurate method that enables new insights into defensin regulation under physiological and pathophysiological conditions.
Original language | English |
---|---|
Journal | Archives of Dermatological Research |
Volume | 296 |
Issue number | 11 |
Pages (from-to) | 539-542 |
Number of pages | 4 |
ISSN | 0340-3696 |
DOIs | |
Publication status | Published - 05.2005 |
Research Areas and Centers
- Academic Focus: Center for Infection and Inflammation Research (ZIEL)