Der einfluss von segmentierung auf die genauigkeit eines CNN-klassifikators zur mimik-steuerung

Translated title of the contribution: The influence of segmentation on the accuracy of a CNN classifier for facial expression control

Ron Keuth*, Lasse Hansen, Mattias P. Heinrich

*Corresponding author for this work

Abstract

Die Erfolge von Faltungsnetzwerken (Convolutional Neural Networks, CNNs) in der Bildverarbeitung haben in den letzten Jahren große Aufmerksamkeit erregt. Die Erforschung von Verfahren zur Klassifikation von Mimik auf Bildern menschlicher Gesichter stellt in der Medizin eine große Chance für Menschen mit körperlicher Behinderung dar. So können beispielsweise einfach Befehle an einen elektronischen Rollstuhl oder ein Computerprogramm übermittelt werden. Diese Arbeit untersucht, ob und wie weit die Verwendung von Zusatzinformation (hier in Form von Segmentierungen von Gesichtspartien) beim Training eines CNN-Klassifikators die Genauigkeit bezüglich der Entscheidung für verschiedene Kiefer- und Lippenstellungen verbessern kann. Unsere Ergebnisse zeigen, dass die Genauigkeit des CNN-Klassifikators mit dem Detailgrad der verwendeten Segmentierungen zunimmt und außerdem bei Zuhilfenahme von Segmentierungen ein deutlich kleinerer Datensatz (60% der ursprünglichen Datenmenge) ausreicht, um ein ähnlich genaues CNN (im Vgl. zu einem ohne Zusantzinformation) zu trainieren.
Translated title of the contributionThe influence of segmentation on the accuracy of a CNN classifier for facial expression control
Original languageGerman
Title of host publicationBildverarbeitung für die Medizin 2020
EditorsThomas Tolxdorff, Thomas M. Deserno, Heinz Handels, Andreas Maier, Klaus H. Maier-Hein, Christoph Palm
Number of pages7
PublisherSpringer Vieweg, Wiesbaden
Publication date12.02.2020
Pages294-300
ISBN (Print)978-3-658-29266-9
ISBN (Electronic)978-3-658-29267-6
DOIs
Publication statusPublished - 12.02.2020
EventBildverarbeitung für die Medizin 2020 - International workshop on Algorithmen - Systeme - Anwendungen
- Berlin, Germany
Duration: 15.03.202017.03.2020
Conference number: 237969

Cite this