TY - JOUR
T1 - Correlation between external and internal respiratory motion
T2 - A validation study
AU - Ernst, Floris
AU - Bruder, Ralf
AU - Schlaefer, Alexander
AU - Schweikard, Achim
PY - 2012/1/1
Y1 - 2012/1/1
N2 - Purpose In motion-compensated image-guided radiotherapy, accurate tracking of the target region is required. This tracking process includes building a correlation model between external surrogate motion and the motion of the target region. A novel correlation method is presented and compared with the commonly used polynomial model. Methods and Materials The CyberKnife system (Accuray, Inc., Sunnyvale/CA) uses a polynomial correlation model to relate externally measured surrogate data (optical fibres on the patient's chest emitting red light) to infrequently acquired internal measurements (X-ray data). A new correlation algorithm based on ε-Support Vector Regression (SVR) was developed. Validation and comparison testing were done with human volunteers using live 3D ultrasound and externally measured infrared light-emitting diodes (IR LEDs). Seven data sets (5:03-6:27 min long) were recorded from six volunteers. Results Polynomial correlation algorithms were compared to the SVR-based algorithm demonstrating an average increase in root mean square (RMS) accuracy of 21.3% (0.4 mm). For three signals, the increase was more than 29% and for one signal as much as 45.6% (corresponding to more than 1.5mm RMS). Further analysis showed the improvement to be statistically significant. Conclusion The new SVR-based correlation method outperforms traditional polynomial correlation methods for motion tracking. This method is suitable for clinical implementation and may improve the overall accuracy of targeted radiotherapy.
AB - Purpose In motion-compensated image-guided radiotherapy, accurate tracking of the target region is required. This tracking process includes building a correlation model between external surrogate motion and the motion of the target region. A novel correlation method is presented and compared with the commonly used polynomial model. Methods and Materials The CyberKnife system (Accuray, Inc., Sunnyvale/CA) uses a polynomial correlation model to relate externally measured surrogate data (optical fibres on the patient's chest emitting red light) to infrequently acquired internal measurements (X-ray data). A new correlation algorithm based on ε-Support Vector Regression (SVR) was developed. Validation and comparison testing were done with human volunteers using live 3D ultrasound and externally measured infrared light-emitting diodes (IR LEDs). Seven data sets (5:03-6:27 min long) were recorded from six volunteers. Results Polynomial correlation algorithms were compared to the SVR-based algorithm demonstrating an average increase in root mean square (RMS) accuracy of 21.3% (0.4 mm). For three signals, the increase was more than 29% and for one signal as much as 45.6% (corresponding to more than 1.5mm RMS). Further analysis showed the improvement to be statistically significant. Conclusion The new SVR-based correlation method outperforms traditional polynomial correlation methods for motion tracking. This method is suitable for clinical implementation and may improve the overall accuracy of targeted radiotherapy.
UR - http://www.scopus.com/inward/record.url?scp=84863009531&partnerID=8YFLogxK
U2 - 10.1007/s11548-011-0653-6
DO - 10.1007/s11548-011-0653-6
M3 - Journal articles
AN - SCOPUS:84863009531
SN - 1861-6410
VL - 7
SP - 483
EP - 492
JO - International Journal of Computer Assisted Radiology and Surgery
JF - International Journal of Computer Assisted Radiology and Surgery
IS - 3
ER -