TY - JOUR
T1 - Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems
AU - Fischer, Tobias W.
AU - Sweatman, Trevor W.
AU - Semak, Igor
AU - Sayre, Robert M.
AU - Wortsman, Jacobo
AU - Slominski, Andrzej
PY - 2006/7
Y1 - 2006/7
N2 - Melatonin, which can be produced in the skin, exerts a protective effect against damage induced by UV radiation (UVR). We have investigated the effect of UVB, the most damaging component of UVR, on melatonin metabolism in HaCaT keratinocytes and in a cell-free system. Four metabolites were identified by HPLC and LC-MS: 6-hydroxymelatonin, N1-acetyl-N2-formyl-5- methoxykynuramine (AFMK), 2-hydroxymelatonin (the main intermediate between melatonin and AFMK), and 4-hydroxymelatonin. Concentrations of these photoproducts were directly proportional to UVR-dose and to melatonin substrate content, and their accumulation was time-dependent. The UVR-dependent increase of AFMK and 2-hydroxymelatonin was also detected in keratinocytes, where it was accompanied by simultaneous consumption of intracellular melatonin. Of note, melatonin and its two major metabolites, 2-hydroxymelatonin and AFMK, were also detected in untreated keratinocytes, neither irradiated nor preincubated with melatonin. Thus, intracellular melatonin metabolism is enhanced under exposure to UVR. The additional biological activity of these individual melatonin metabolites increases the spectrum of potential actions of the recently identified cutaneous melatoninergic system.
AB - Melatonin, which can be produced in the skin, exerts a protective effect against damage induced by UV radiation (UVR). We have investigated the effect of UVB, the most damaging component of UVR, on melatonin metabolism in HaCaT keratinocytes and in a cell-free system. Four metabolites were identified by HPLC and LC-MS: 6-hydroxymelatonin, N1-acetyl-N2-formyl-5- methoxykynuramine (AFMK), 2-hydroxymelatonin (the main intermediate between melatonin and AFMK), and 4-hydroxymelatonin. Concentrations of these photoproducts were directly proportional to UVR-dose and to melatonin substrate content, and their accumulation was time-dependent. The UVR-dependent increase of AFMK and 2-hydroxymelatonin was also detected in keratinocytes, where it was accompanied by simultaneous consumption of intracellular melatonin. Of note, melatonin and its two major metabolites, 2-hydroxymelatonin and AFMK, were also detected in untreated keratinocytes, neither irradiated nor preincubated with melatonin. Thus, intracellular melatonin metabolism is enhanced under exposure to UVR. The additional biological activity of these individual melatonin metabolites increases the spectrum of potential actions of the recently identified cutaneous melatoninergic system.
UR - http://www.scopus.com/inward/record.url?scp=33845706850&partnerID=8YFLogxK
U2 - 10.1096/fj.05-5227fje
DO - 10.1096/fj.05-5227fje
M3 - Journal articles
C2 - 16793870
AN - SCOPUS:33845706850
SN - 0892-6638
VL - 20
SP - E897-E907
JO - FASEB Journal
JF - FASEB Journal
IS - 9
ER -