Projects per year
Abstract
Internal circadian clocks coordinate 24 h rhythms in behavior and physiology. Many immune functions show daily oscillations, and cellular circadian clocks can impact immune functions and disease outcome. Inflammation may disrupt circadian clocks in peripheral tissues and innate immune cells. However, it remains elusive if chronic inflammation impacts adaptive immune cell clock, e.g., in CD4+ and CD8+ T lymphocytes. We studied this in the experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis, as an established experimental paradigm for chronic inflammation. We analyzed splenic T cell circadian clock and immune gene expression rhythms in mice with late-stage EAE, CFA/PTx-treated, and untreated mice. In both treatment groups, clock gene expression rhythms were altered with differential effects for baseline expression and peak phase compared with control mice. Most immune cell marker genes tested in this study did not show circadian oscillations in either of the three groups, but time-of-day- independent alterations were observed in EAE and CFA/PTx compared to control mice. Notably, T cell effects were likely independent of central clock function as circadian behavioral rhythms in EAE mice remained intact. Together, chronic inflammation induced by CFA/PTx treatment and EAE immunization has lasting effects on circadian rhythms in peripheral immune cells.
Original language | English |
---|---|
Article number | 151 |
Journal | Cells |
Volume | 13 |
Issue number | 2 |
ISSN | 1066-5099 |
DOIs | |
Publication status | Published - 13.01.2024 |
Research Areas and Centers
- Academic Focus: Center for Infection and Inflammation Research (ZIEL)
- Academic Focus: Center for Brain, Behavior and Metabolism (CBBM)
DFG Research Classification Scheme
- 2.21-05 Immunology
- 2.22-17 Endocrinology, Diabetology, Metabolism
Fingerprint
Dive into the research topics of 'Chronic Inflammation Disrupts Circadian Rhythms in Splenic CD4+ and CD8+ T Cells in Mice'. Together they form a unique fingerprint.Projects
- 1 Active
-
CRC/Transregio TRR 296 LocoTact: Local control of TH action
Führer-Sakel, D. (Speaker, Coordinator), Mittag, J. (Second Speaker/Coordinator), Kühnen, P. (Second Speaker/Coordinator), Heuer, H. (Principal Investigator (PI)), Schwaninger, M. (Principal Investigator (PI)), Müller-Fielitz, H. (Principal Investigator (PI)), Bechmann, I. (Principal Investigator (PI)), Biebermann, H. (Principal Investigator (PI)), Müller, T. (Principal Investigator (PI)), Pfluger, P. (Principal Investigator (PI)), Krude, H. (Principal Investigator (PI)), Schülke-Gerstenfeld, M. (Principal Investigator (PI)), Cirkel, A. (Principal Investigator (PI)), Münte, T. (Principal Investigator (PI)), Kleinschnitz, C. (Principal Investigator (PI)), Langhauser, F. (Principal Investigator (PI)), Engel, D. R. (Principal Investigator (PI)), Möller, L. (Principal Investigator (PI)), Kaiser, F. (Principal Investigator (PI)), Oster, H. (Principal Investigator (PI)), Kirchner, H. (Principal Investigator (PI)), Spranger, J. (Principal Investigator (PI)), Tacke, F. (Principal Investigator (PI)), Wirth, E. K. (Principal Investigator (PI)), Köhrle, J. (Principal Investigator (PI)), Schomburg, L. (Principal Investigator (PI)), Lange, C. M. (Principal Investigator (PI)), Zwanziger, D. (Principal Investigator (PI)), Mayerl, S. (Principal Investigator (PI)) & Stachelscheid, H. (Principal Investigator (PI))
01.01.20 → …
Project: DFG Projects › DFG Joint Research: Collaborative Research Center/ Transregios