Cell-line and tissue-specific signatures of androgen receptor-coregulator transcription

Jan Hendrik Bebermeier, James D. Brooks, Samuel E. DePrimo, Ralf Werner, Uta Deppe, Janos Demeter, Olaf Hiort, Paul Martin Holterhus*

*Corresponding author for this work
37 Citations (Scopus)

Abstract

Normal genital skin fibroblasts (GSF) and the human prostate carcinoma cell line LNCaP have been used widely as cell culture models of genital origin to study androgen receptor (AR) signaling. We demonstrate that LNCaP shows a reproducible response to androgens as assessed using cDNA-microarrays representing approximately 32,000 unique human genes, whereas several independent GSF strains are virtually unresponsive. We show that LNCaP cells express markedly higher AR protein levels likely contributing to the observed differences of androgen responsiveness. However, previous data suggested that AR-expression levels alone do not determine androgen responsiveness of human GSF compared to LNCaP. We hypothesized that cell-specific differences in expression levels of AR coregulators might contribute to differences in androgen responsiveness and might be found by comparing LNCaP and GSFs. Using the Canadian McGill-database of AR coregulators ( http://www.mcgill.ca/androgendb ), we identified 61 AR-coregulator genes represented by 282 transcripts on our microarray platform that was used to measure transcript profiles of LNCaP and GSF cells. Baseline expression levels of 48 AR-coregulator transcripts representing 33 distinct genes showed significant differences between GSF and LNCaP, four of which we confirmed by reverse transcriptase polymerase chain reaction. Compared to LNCaP, GSFs displayed significant upregulation of AR coregulators that can function as repressors of AR-transactivation, such as caveolin 1. Analysis of a recently published comprehensive dataset of 115 microarrays representing 35 different human tissues revealed tissue-specific signatures of AR coregulators that segregated with ontogenetically related groups of tissues (e.g., lymphatic system and genital tissues, brain). Our data demonstrate the existence of cell-line and tissue-specific expression patterns of molecules with documented AR coregulatory functions. Therefore, differential expression patterns of AR coregulators could modify tissue-specificity and diversity of androgen actions in development, physiology, and disease.

Original languageEnglish
JournalJournal of Molecular Medicine
Volume84
Issue number11
Pages (from-to)919-931
Number of pages13
ISSN0946-2716
DOIs
Publication statusPublished - 11.2006

Fingerprint

Dive into the research topics of 'Cell-line and tissue-specific signatures of androgen receptor-coregulator transcription'. Together they form a unique fingerprint.

Cite this