TY - JOUR
T1 - Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis
AU - Jacobsen, Marc
AU - Repsilber, Dirk
AU - Gutschmidt, Andrea
AU - Neher, Albert
AU - Feldmann, Knut
AU - Mollenkopf, Hans J.
AU - Ziegler, Andreas
AU - Kaufmann, Stefan H.E.
N1 - Funding Information:
Acknowledgments This study was supported in part by the National Genome Research Network (Germany), the EU FP6 funded IP “TBVAC”, and Grand Challenge 6 of the Bill & Melinda Gates Foundation to S. H. E. Kaufmann and M. Jacobsen. H.-J. Mollenkopf and S. H. E. Kaufmann acknowledge additional funding by the European Fund for Regional Development/State of Berlin. The authors have no conflicting financial interests. We thank M. L. Grossman for carefully revising the manuscript.
PY - 2007/6
Y1 - 2007/6
N2 - Infection with Mycobacterium tuberculosis is controlled by an efficacious immune response in about 90% of infected individuals who do not develop disease. Although essential mediators of protection, e.g., interferon-γ, have been identified, these factors are insufficient to predict the outcome of M. tuberculosis infection. As a first step to determine additional biomarkers, we compared gene expression profiles of peripheral blood mononuclear cells from tuberculosis patients and M. tuberculosis-infected healthy donors by microarray analysis. Differentially expressed candidate genes were predominantly derived from monocytes and comprised molecules involved in the antimicrobial defense, inflammation, chemotaxis, and intracellular trafficking. We verified differential expression for alpha-defensin 1, alpha-defensin 4, lactoferrin, Fcγ receptor 1A (cluster of differentiation 64 [CD64]), bactericidal permeability-increasing protein, and formyl peptide receptor 1 by quantitative polymerase chain reaction analysis. Moreover, we identified increased protein expression of CD64 on monocytes from tuberculosis patients. Candidate biomarkers were then assessed for optimal study group discrimination. Using a linear discriminant analysis, a minimal group of genes comprising lactoferrin, CD64, and the Ras-associated GTPase 33A was sufficient for classification of (1) tuberculosis patients, (2) M. tuberculosis-infected healthy donors, and (3) noninfected healthy donors.
AB - Infection with Mycobacterium tuberculosis is controlled by an efficacious immune response in about 90% of infected individuals who do not develop disease. Although essential mediators of protection, e.g., interferon-γ, have been identified, these factors are insufficient to predict the outcome of M. tuberculosis infection. As a first step to determine additional biomarkers, we compared gene expression profiles of peripheral blood mononuclear cells from tuberculosis patients and M. tuberculosis-infected healthy donors by microarray analysis. Differentially expressed candidate genes were predominantly derived from monocytes and comprised molecules involved in the antimicrobial defense, inflammation, chemotaxis, and intracellular trafficking. We verified differential expression for alpha-defensin 1, alpha-defensin 4, lactoferrin, Fcγ receptor 1A (cluster of differentiation 64 [CD64]), bactericidal permeability-increasing protein, and formyl peptide receptor 1 by quantitative polymerase chain reaction analysis. Moreover, we identified increased protein expression of CD64 on monocytes from tuberculosis patients. Candidate biomarkers were then assessed for optimal study group discrimination. Using a linear discriminant analysis, a minimal group of genes comprising lactoferrin, CD64, and the Ras-associated GTPase 33A was sufficient for classification of (1) tuberculosis patients, (2) M. tuberculosis-infected healthy donors, and (3) noninfected healthy donors.
UR - http://www.scopus.com/inward/record.url?scp=34249948116&partnerID=8YFLogxK
U2 - 10.1007/s00109-007-0157-6
DO - 10.1007/s00109-007-0157-6
M3 - Journal articles
C2 - 17318616
AN - SCOPUS:34249948116
SN - 0946-2716
VL - 85
SP - 613
EP - 621
JO - Journal of Molecular Medicine
JF - Journal of Molecular Medicine
IS - 6
ER -