Brain activity during a working memory task after daily caffeine intake and caffeine withdrawal: a randomized double-blind placebo-controlled trial

Yu Shiuan Lin*, Janine Weibel, Hans Peter Landolt, Francesco Santini, Helen Slawik, Stefan Borgwardt, Christian Cajochen*, Carolin Franziska Reichert

*Corresponding author for this work
4 Citations (Scopus)

Abstract

Acute caffeine intake has been found to increase working memory (WM)-related brain activity in healthy adults without improving behavioral performances. The impact of daily caffeine intake—a ritual shared by 80% of the population worldwide—and of its discontinuation on working memory and its neural correlates remained unknown. In this double-blind, randomized, crossover study, we examined working memory functions in 20 young healthy non-smokers (age: 26.4 ± 4.0 years; body mass index: 22.7 ± 1.4 kg/m2; and habitual caffeine intake: 474.1 ± 107.5 mg/day) in a 10-day caffeine (150 mg × 3 times/day), a 10-day placebo (3 times/day), and a withdrawal condition (9-day caffeine followed by 1-day placebo). Throughout the 10th day of each condition, participants performed four times a working memory task (N-Back, comprising 3- and 0-back), and task-related blood-oxygen-level-dependent (BOLD) activity was measured in the last session with functional magnetic resonance imaging. Compared to placebo, participants showed a higher error rate and a longer reaction time in 3- against 0-back trials in the caffeine condition; also, in the withdrawal condition we observed a higher error rate compared to placebo. However, task-related BOLD activity, i.e., an increased attention network and decreased default mode network activity in 3- versus 0-back, did not show significant differences among three conditions. Interestingly, irrespective of 3- or 0-back, BOLD activity was reduced in the right hippocampus in the caffeine condition compared to placebo. Adding to the earlier evidence showing increasing cerebral metabolic demands for WM function after acute caffeine intake, our data suggest that such demands might be impeded over daily intake and therefore result in a worse performance. Finally, the reduced hippocampal activity may reflect caffeine-associated hippocampal grey matter plasticity reported in the previous analysis. The findings of this study reveal an adapted neurocognitive response to daily caffeine exposure and highlight the importance of classifying impacts of caffeine on clinical and healthy populations.

Original languageEnglish
Article number1002
JournalScientific Reports
Volume13
Issue number1
ISSN2045-2322
DOIs
Publication statusPublished - 12.2023

Research Areas and Centers

  • Academic Focus: Center for Brain, Behavior and Metabolism (CBBM)

DFG Research Classification Scheme

  • 206-04 Cognitive, Systemic and Behavioural Neurobiology
  • 206-08 Cognitive and Systemic Human Neuroscience

Fingerprint

Dive into the research topics of 'Brain activity during a working memory task after daily caffeine intake and caffeine withdrawal: a randomized double-blind placebo-controlled trial'. Together they form a unique fingerprint.

Cite this