Abstract
Min-Nets are inspired by end-stopped cortical cells with units that output the minimum of two learned filters. We insert such Min-units into state-of-the-art deep networks, such as the popular ResNet and DenseNet, and show that the resulting Min-Nets perform better on the Cifar-10 benchmark. Moreover, we show that Min-Nets are more robust against JPEG compression artifacts. We argue that the minimum operation is the simplest way of implementing an AND operation on pairs of filters and that such AND operations introduce a bias that is appropriate given the statistics of natural images.
Original language | English |
---|---|
Title of host publication | SVRHM 2021 Workshop NeurIPS |
Publication date | 2021 |
Publication status | Published - 2021 |
Research Areas and Centers
- Centers: Center for Artificial Intelligence Luebeck (ZKIL)
- Research Area: Intelligent Systems
DFG Research Classification Scheme
- 4.43-05 Image and Language Processing, Computer Graphics and Visualisation, Human Computer Interaction, Ubiquitous and Wearable Computing