TY - JOUR
T1 - Beyond Vibrationally Mediated Electron Transfer
T2 - Coherent Phenomena Induced by Ultrafast Charge Separation
AU - Huber, Robert
AU - Dworak, Lars
AU - Moser, Jacques E.
AU - Grätzel, Michael
AU - Wachtveitl, Josef
PY - 2016/4/28
Y1 - 2016/4/28
N2 - Wave packet propagation succeeding electron transfer (ET) from alizarin dye molecules into the nanocrystalline TiO2 semiconductor has been studied by ultrafast transient absorption spectroscopy. Because of the ultrafast time scale of the ET reaction of about 6 fs, the system shows substantial differences to molecular ET systems. We show that the ET process is not mediated by molecular vibrations, and therefore classical ET theories lose their applicability. Here the ET reaction itself prepares a vibrational wave packet and not the electromagnetic excitation by the laser pulse. Furthermore, the generation of phonons during polaron formation in the TiO2 lattice is observed in real time for this system. The presented investigations enable an unambiguous assignment of the involved photoinduced mechanisms and can contribute to a corresponding extension of molecular ET theories to ultrafast ET systems like alizarin/TiO2.
AB - Wave packet propagation succeeding electron transfer (ET) from alizarin dye molecules into the nanocrystalline TiO2 semiconductor has been studied by ultrafast transient absorption spectroscopy. Because of the ultrafast time scale of the ET reaction of about 6 fs, the system shows substantial differences to molecular ET systems. We show that the ET process is not mediated by molecular vibrations, and therefore classical ET theories lose their applicability. Here the ET reaction itself prepares a vibrational wave packet and not the electromagnetic excitation by the laser pulse. Furthermore, the generation of phonons during polaron formation in the TiO2 lattice is observed in real time for this system. The presented investigations enable an unambiguous assignment of the involved photoinduced mechanisms and can contribute to a corresponding extension of molecular ET theories to ultrafast ET systems like alizarin/TiO2.
UR - http://www.scopus.com/inward/record.url?scp=84966440586&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.6b02012
DO - 10.1021/acs.jpcc.6b02012
M3 - Journal articles
AN - SCOPUS:84966440586
SN - 1932-7447
VL - 120
SP - 8534
EP - 8539
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 16
ER -