TY - JOUR
T1 - Basic fibroblast growth factor
T2 - a potential new therapeutic tool for the treatment of hypertrophic and keloid scars
AU - Tiede, Stephan
AU - Ernst, Nancy
AU - Bayat, Ardeshir
AU - Paus, Ralf
AU - Tronnier, Volker
AU - Zechel, Christina
PY - 2009/1
Y1 - 2009/1
N2 - Numerous tissue niches in the human body, such as skin, are now recognized to harbour adult stem cells. In this study, we analyze multipotent human dermis-derived progenitor cell populations, isolated and propagated from mechanically and enzymatically processed adult scalp skin. The populations encompass Nestin-positive and -negative cells, which may serve as a convenient and abundant source for various therapeutic applications in regenerative medicine. Here, we show that these cultures exhibit a strong tendency to differentiate into mesodermal derivatives, particularly myofibroblasts, when maintained in media containing serum. Since undesired and excessive myofibroblast formation is a frequent postsurgical complication, we sought culture conditions that would prevent myofibroblast formation. In particular, we analyzed the effect of growth factors, such as epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and platelet-derived growth factor AB (PDGF AB). Our results demonstrate that bFGF is a potent inhibitor of mesodermal differentiation, whereas PDFG AB favours myofibroblast formation and up-regulates expression of TGFbeta receptors I and II. This interesting discovery may help in the prevention and treatment of tissue fibrosis and in particular in the eradication of hypertrophic and keloid scars.
AB - Numerous tissue niches in the human body, such as skin, are now recognized to harbour adult stem cells. In this study, we analyze multipotent human dermis-derived progenitor cell populations, isolated and propagated from mechanically and enzymatically processed adult scalp skin. The populations encompass Nestin-positive and -negative cells, which may serve as a convenient and abundant source for various therapeutic applications in regenerative medicine. Here, we show that these cultures exhibit a strong tendency to differentiate into mesodermal derivatives, particularly myofibroblasts, when maintained in media containing serum. Since undesired and excessive myofibroblast formation is a frequent postsurgical complication, we sought culture conditions that would prevent myofibroblast formation. In particular, we analyzed the effect of growth factors, such as epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and platelet-derived growth factor AB (PDGF AB). Our results demonstrate that bFGF is a potent inhibitor of mesodermal differentiation, whereas PDFG AB favours myofibroblast formation and up-regulates expression of TGFbeta receptors I and II. This interesting discovery may help in the prevention and treatment of tissue fibrosis and in particular in the eradication of hypertrophic and keloid scars.
U2 - 10.1016/j.aanat.2008.10.001
DO - 10.1016/j.aanat.2008.10.001
M3 - Journal articles
C2 - 19071002
SN - 0940-9602
VL - 191
SP - 33
EP - 44
JO - Annals of Anatomy
JF - Annals of Anatomy
IS - 1
ER -