TY - JOUR
T1 - Axonal projection-specific differences in somatodendritic α2 autoreceptor function in locus coeruleus neurons
AU - Wagner-Altendorf, Tobias A.
AU - Fischer, Beatrice
AU - Roeper, Jochen
N1 - Funding Information:
We thank Annika Parg for her excellent technical support and Sabine Krabbe for teaching TWA to use the Roeper laboratory protocol for in vivo fluorescent bead tracing. Research was supported by funding to JR (CRC1080, DFG and Gutenberg Research College).
Publisher Copyright:
© 2019 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2019/12/1
Y1 - 2019/12/1
N2 - The locus coeruleus (LC) contains the majority of central noradrenergic neurons sending wide projections throughout the entire CNS. The LC is considered to be essential for multiple key brain functions including arousal, attention and adaptive stress responses as well as higher cognitive functions and memory. Electrophysiological studies of LC neurons have identified several characteristic functional features such as low-frequency pacemaker activity with broad action potentials, transient high-frequency burst discharges in response to salient stimuli and an apparently homogeneous inhibition of firing by activation of somatodendritic α2 autoreceptors (α2AR). While stress-mediated plasticity of the α2AR response has been described, it is currently unclear whether different LC neurons projecting to distinct axonal targets display differences in α2AR function. Using fluorescent beads-mediated retrograde tracing in adult C57Bl6/N mice, we compared the anatomical distributions and functional in vitro properties of identified LC neurons projecting either to medial prefrontal cortex, hippocampus or cerebellum. The functional in vitro analysis of LC neurons confirmed their mostly uniform functional properties regarding action potential generation and pacemaker firing. However, we identified significant differences in tonic and evoked α2AR-mediated responses. While hippocampal-projecting LC neurons were partially inhibited by endogenous levels of norepinephrine and almost completely silenced by application of saturating concentrations of the α2 agonist clonidine, prefrontal-projecting LC neurons were not affected by endogenous levels of norepinephrine and only partially inhibited by saturating concentrations of clonidine. Thus, we identified a limited α2AR control of electrical activity for prefrontal-projecting LC neurons indicative of functional heterogeneity in the LC-noradrenergic system.
AB - The locus coeruleus (LC) contains the majority of central noradrenergic neurons sending wide projections throughout the entire CNS. The LC is considered to be essential for multiple key brain functions including arousal, attention and adaptive stress responses as well as higher cognitive functions and memory. Electrophysiological studies of LC neurons have identified several characteristic functional features such as low-frequency pacemaker activity with broad action potentials, transient high-frequency burst discharges in response to salient stimuli and an apparently homogeneous inhibition of firing by activation of somatodendritic α2 autoreceptors (α2AR). While stress-mediated plasticity of the α2AR response has been described, it is currently unclear whether different LC neurons projecting to distinct axonal targets display differences in α2AR function. Using fluorescent beads-mediated retrograde tracing in adult C57Bl6/N mice, we compared the anatomical distributions and functional in vitro properties of identified LC neurons projecting either to medial prefrontal cortex, hippocampus or cerebellum. The functional in vitro analysis of LC neurons confirmed their mostly uniform functional properties regarding action potential generation and pacemaker firing. However, we identified significant differences in tonic and evoked α2AR-mediated responses. While hippocampal-projecting LC neurons were partially inhibited by endogenous levels of norepinephrine and almost completely silenced by application of saturating concentrations of the α2 agonist clonidine, prefrontal-projecting LC neurons were not affected by endogenous levels of norepinephrine and only partially inhibited by saturating concentrations of clonidine. Thus, we identified a limited α2AR control of electrical activity for prefrontal-projecting LC neurons indicative of functional heterogeneity in the LC-noradrenergic system.
UR - http://www.scopus.com/inward/record.url?scp=85074841764&partnerID=8YFLogxK
U2 - 10.1111/ejn.14553
DO - 10.1111/ejn.14553
M3 - Journal articles
C2 - 31430399
AN - SCOPUS:85074841764
SN - 0953-816X
VL - 50
SP - 3772
EP - 3785
JO - European Journal of Neuroscience
JF - European Journal of Neuroscience
IS - 11
ER -