Automatic Detection of Cardiac Remodeling using Global and Local Clinical Measures and Random Forest Classification

Jan Ehrhardt, Matthias Wilms, Heinz Handels, Dennis Säring

Abstract

Myocardial infarction leads to a change in geometry and a modified motion characteristics of the heart, called remodeling. The detection of patients with subclinical remodeling is clinically relevant because effective therapies have to be initiated early to avoid a progressive dilatation, and deterioration in contractile function.

In this paper, we propose a classification approach to detect patients with cardiac remodeling based on established global and local clinical parameters, like end-diastolic and end-systolic volume, ejection fraction or local myocardial thickness. The functional parameters are extracted based on segmented endo- and epicardial contours using an in-house developed software tool. A random decision forest is trained for recognition of patients with impaired shape or motion characteristics. The 17 segment model of the left ventricle proposed by the American Heart Association is compared to a higher resolution model using 97 left ventricle segments in terms of classification performance.

The classification results are submitted to the left ventricle statistical shape modelling challenge with the aim to compare the classification performance of classical clinical parameters with other probabilistic or model-based approaches. A leave-one-out cross-validation shows an accuracy of 0.93 using global and local parameters compared to an accuracy of 0.86 using global parameters only.
Original languageEnglish
Title of host publicationStatistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges
EditorsTommaso Mansi, Kristin McLeod, Mihaela Pop, Kawal Rhode, Maxime Sermesant, Alistair Young
Number of pages9
Volume9534
PublisherSpringer International Publishing
Publication date09.01.2016
Pages199-207
ISBN (Print)978-3-319-52717-8
ISBN (Electronic)978-3-319-52718-5
DOIs
Publication statusPublished - 09.01.2016
EventBrainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, First International Workshop, Brainles 2015, Held in Conjuction with MICCAI 2015
- Munich, Germany
Duration: 05.10.201509.10.2015

Fingerprint

Dive into the research topics of 'Automatic Detection of Cardiac Remodeling using Global and Local Clinical Measures and Random Forest Classification'. Together they form a unique fingerprint.

Cite this